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Abstract

Long range interactions in the scene represent key el-
ements in solving numerous visual tasks. While convolu-
tional models have been extensively studied, newer meth-
ods like graph neural networks have been gaining track in
recent time. We investigate the capacities of current models
to capture distant connections by studying theoretically and
empirically the effective receptive field of graph models.

We prove that the outputs of Graph Convolutional Net-
works are influenced by regions where it is highly probable
to arrive in several steps, while Self-Attention depends more
on the regions that are strongly correlated with the consid-
ered location. We show that graph models achieve superior
results when distant connections are essential and we em-
pirically confirm our theoretically findings.

1. Introduction

Visual tasks requires a complex analysis of the scene
consisting of different elements at multiple scales, with dif-
ferent spatial relationships and various levels of semantic
meaning. Recently, graph neural networks have been used
with success in computer vision tasks, as they can better
model relationships, even at large distances, and are able to
connect entities that are semantically correlated.

Different spatial modeling are needed in various vision
tasks, with some tasks being solvable with local information
while most of them need a larger view of the scene. For ex-
ample, in classification the entire object must be covered, in
tracking both the object and some background information
must be considered, while in activity recognition the tasks
could be dependent on the relationships between multiple
objects.

A model should be capable of looking at multiple regions
in the scene in order to incorporate relevant interactions into
its representation. But having a global view should not crip-
ple the capabilities of the model to learn meaningful repre-
sentations. The model should have enough capacity while
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still being easily optimizable.
We analyse the effective receptive field (ERF) [25] of dif-

ferent graph based models, representing the regions in the
input that have a large influences for an output location p
of the model. The ERF of convolutional models is shown
to be Gaussian distributed [25], meaning that the produced
features mainly depend on its close neighbourhood.

As stated above, there are cases in computer vision
where a view of the entire scene is necessary, and such
thing could be achieved by using a large number of convolu-
tional layers that results in an ERF distributed by a Gaussian
with higher standard deviation. This comes at the cost of
increasing computational resources and making the model
harder to optimize. Such issues could be alleviated by using
Graph Neural Networks (GNNs), with long range connec-
tions, that have proven good results in many vision tasks
such as visual question answering [28], video action recog-
nition [32, 33, 26] and tracking [13].

In this work, we focus on Graph Convolutional Networks
(GCNs) and Self-Attention methods and observe that their
effective receptive field is more flexible and could cover the
entire input space.

We prove that GCNs have effective receptive field that
depends on the fixed connections in the graph, being able to
see the entire input, but having a fixed structure, without the
possibility to adapt to the input. On the other hand, Self-
Attention models could cover the same large zones while
being more influenced by correlated regions.

Main contributions:

• We prove that the effective receptive field of a Graph
Convolutional Network depends on the probability of
reaching every input starting from the considered node,
as given by AN .

• We prove that the effective receptive field of a Self-
Attention layer is proportional with the correlations of
the considered node with every input node.

• We empirically show that the effective receptive field
of graph models are consistent with our theoretically
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results and we experimentally show that they obtain
superior results in tasks where long-range connections
are essential.

2. Related Work
Convolutional neural networks have become ubiquitous

in computer vision tasks, from classification[18, 8, 6] to
segmentation[7], detection [16, 27] or tracking [10, 29] for
both image and video tasks.

We are interested in the receptive field [2] of neural mod-
els, representing the region in the input that affects in any
way the output. In convolutional layers, the receptive field
grows linear with the number of layers with stride one and
multiplicatively by using layers with stride higher than 1.

The receptive field can be increased by using different
types of convolutional layers. Dilated convolutions [36] use
a sparse kernel, effectively aggregating more distant points,
in turn expanding the field of view. Similarly, in deformable
convolutions [9], the kernel of the convolution is sparse but
the location of each point in the kernel is learned.

The effective receptive field [25], representing the region
in input image that has a non-negligible impact for an output
location, have been studied for convolutional models show-
ing that the effective receptive fields is Gaussian distributed.
We study the behaviour of graph neural networks in regards
to the effective receptive field.

Graph neural networks have been recently used in many
domains where the data has a non-uniform structure [4, 14,
5]. They have been applied with superior results on tasks
such as molecule generation [24], document categoriza-
tion [19, 11, 23, 31], physical interactions [3], motion fore-
casting [21], video question answering [28], action recogni-
tion [32, 33].

There have been a number of works that generalize con-
volutional neural networks for non-uniform structured data,
by learning in the spectral domain of a graph [5, 19, 11].
Such methods are approximated by Graph Convolutional
Networks [23] that send linear projection of node features
as messages between all connected nodes.

The general framework used in graph neural net-
works [14] consists of processing data arranged in a graph
structure by creating messages between each pair of con-
nected nodes, aggregating the messages from a neighbour-
hood and updating the state of each node using the received
information. Different aggregation methods have been pro-
posed, such as mean or average pooling [34] or pooling
by recurrent networks[15]. In order to selectively attend
to some subset of nodes, attention mechanisms have been
used to aggregate the neighbourhood [31].

The idea of forming relations from visual elements given
by convolutional features appears in [28] where they pro-
cess pairs of features from every location in order to capture
distant interactions in the scene.

Current language tasks largely adopted graph meth-
ods [12] in the form of Self-Attention [30] models. The
Transformer model [30] uses Self-Attention implemented
as dot product between projected features to attend dif-
ferently to word features. This can be seen as sending
messages in a fully connected graph, with the messages
weighted by a similarity measure. For vision tasks, the Non-
Local [32] method creates a graph from convolutional fea-
tures and uses Self-Attention mechanism in order to have
long range connection between entities in the video.

The authors of JK-Net [35] suggest that different sam-
ples need to inspect a neighbourhood of various size. In or-
der to do this, they analyse the influence score of the nodes
in a Graph Convolutional Network, showing that the influ-
ence of nodes in expectation is the random walk distribu-
tion. We obtain similar results for GCN, and also extend
the analysis for Self-Attention layers.

3. Effective receptive field of GNNs
The effective receptive field (ERF) measures how much

each input location i = (hi, wi) impacts the features for
the output location p = (hp, wp). Formally, following [25],
ERF is the derivative of output feature yp with respect to
each input features xi. A large value of the effective recep-
tive field indicates that a small change in the input value has
a big impact on the output results.

We are interested in the importance of each location
i = (hi, wi) in the input X ∈ RH1×W1×C1 for a certain
location p = (hp, wp) in the output Y ∈ RH2×W2×C2 .
We sometimes denote the location p as the central location,
but it can be any fixed position in the output. The exact in-
fluence of the channels is not relevant for our analysis, we
are only concerned with the spatial locations. Thus we add
the influence of all the channels of each input Xi to every
channels of the central output Yp as in Equation 19.

erf(p, i) =
c∑

r=1

c∑
s=1

∂Ypr
∂Xis

∈ R (1)

By settingL =
∑

r Ypr, we obtain∇LY = dL
dY a n × cma-

trix with ones on the p-th line and zeros otherwise and we
can write the ERF as:

erf(p, i) =
c∑

s=1

(∇LX)i,s ∈ R (2)

We will now analyse the effective receptive field of
Graph Convolutional Networks and Self-Attention layers
and observe their behaviour. We give the main results re-
garding the effective receptive field in the following sec-
tions, and leave in the Appendix the complete derivations.

We study graph methods for vision tasks, where each
node contains visual information from a specific region in
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the scene. We use a convolutional backbone model to ex-
tract feature volumes X ∈ Rh×w×c and use it to create
n = h × w nodes ni ∈ Rc, each corresponding to a lo-
cation. For video processing, we could integrate the time
dimension in a complex way, but as we are only interested
in the influence of spatial locations, we simplify the method
by treating them independently.

We create the structure of the graph by linking the nodes
in various ways, such as connecting only the neighbouring
nodes from the grid structure of the convolutional features,
or connecting each pair of nodes.

3.1. ERF of Graph Convolutional Networks

Given a graph G = (V,E), where all nodes ni, arranged
in a matrix X ∈ Rn×c, are connected by an adjacency ma-
trix A ∈ Rn×n, a Graph Convolutional Network [23] with
L layers is defined as:

X(l+1) = σ
(
AX(l)Wl

)
(3)

Y = X(L+1) = AX(L)WL,

where Wl ∈ Rc×c is a linear projection at layer l,
Y ∈ Rn×c is the output nodes features of the GCN and
σ is the ReLU activation.

We begin by studying the effective receptive field of
GCN models without ReLU activations, then show how the
properties generalises for models with ReLU activations. In
order to observe the general behaviour of the model, we
compute the expected value of the ERF for a given model,
with fixed weights, by varying only the input, or for all pos-
sible model configurations by varying both the input and the
weights.

Theorem 1. In a Graph Convolutional Network with L
layers, without ReLU non-liniarities, the effective recep-
tive field of an output node Yp with respect to every input
nodeXi depends on the probability of reaching theXi node
starting from Yp as in Equation 23.

We obtain the ERF by summing the partial derivatives
∂Yp

∂Xi
according to Equation 19. As we do for the rest of the

paper, we give the final result and leave for the Appendix
the complete derivations.

∂Yp
∂Xi

= (AL)p,i(

L∏
l=1

Wl)
T ∈ Rc×c (4)

Alternatively, using Eq. 20 we can obtain the ERF from:

∇LX = (AL)T∇LY (

L∏
l=1

Wl)
T ∈ Rn×c (5)

Constant weights. We study the behaviour of the model
for various inputs by computing the expected effective re-
ceptive field for a given set of parameters, by averaging over
all possible inputs. For this case we set W = Jc, a c × c
all-ones matrix, obtaining:

EX [erf(p, i)] = c(L+1)(AL)p,i (6)

Since the term c(L+1) is constant with respect to the po-
sition in the input, we are only interested in the second term
(AL)p,i, giving us an order of the importance of each loca-
tion. Thus the location i is proportional to the probability
of reaching i from p in L steps by a random walk. Thus
the most impactful locations are the direct neighbours then
comes the higher order ones in decreasing order. This is
similar to the behaviour of convolutions, but in GCN case,
we can explicitly set the connections, being preferred when
a good prior on the structure is known.

Random weights. In order to consider the bias of the
GCN architecture, regardless of the weights, we compute
the expected ERF by varying both the input and the weights.
We consider a GCN with random weights, sampled inde-
pendently from a standard Gaussian Wl ∼ N (0, I).

We compute the expected values of the ERF over all
the inputs and all possible weights. Using the fact that the
weights in different layers are independent and all of them
are centered in zero we obtain:

EX,W [erf(p, i)] =
c∑

r=1

c∑
s=1

(AL)p,i(

L∏
l=1

E[Wl])
T
r,s = 0 (7)

For every ERF given by a set of weights W , we have
another model with weights −W that has the same ERF
with opposite sign, adding zero to the expectation, but their
absolute values are still of interest. Thus it is relevant to
observe the magnitude of the ERF variations, given by its
variance.

VX,W [erf(p, i)] = c(L+1)[(AL)p,i]
2 (8)

We observe that the ERF variance in the preceding Equa-
tion is also proportional to (AL)i,j similar with the constant
case in Equation 37.

We now analyse effective receptive field for GCN models
with ReLU activations and obtain similar observations.

Theorem 2. In a Graph Convolutional Network with L lay-
ers with ReLU non-linearities, the effective receptive field
of an output node yp with respect to every input node xi
depends on the probability of reaching the xi node starting
from yp as in Equation 51.
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By summation as in Equation 20 we obtain the ERF
from:

∇L(l)
X = AT (∇L(l+1)

X � Z(l))WT
l ∈ Rn×c (9)

∇L(L)
X = AT∇LYW

T
L ∈ Rn×c

Z(l) = I(AX(l)Wl > 0) ∈ Rn×c

where∇L(l)
X = ∇LX(l)

At every layer, the maximum possible effective receptive
field is the same as in the case without activations, but the
impact of every input could be blocked by the ReLU non-
linearity, lowering the importance of certain inputs.

In the forward pass, the activations of the model given
by ReLU are Z �X , where Z is a binary gate being equal
to one for positive features and zero otherwise. The same Z
gates the impact of the input features in the ERF.

In the following, we assume that the ReLU gates Z(l1)

and Z(l2) are independent for every two layers l1 6= l2.
Based on the assumption in [17] that the activations X(l)

i

have a symmetric distribution around zero at every layer,
the Z(l) gates follows a Bernoulli distribution with equal
probability. Thus at each layer, the expected value E[Z] of
each channel is 1

2 , with the same expected values gateing
the ERF.

For simplicity, we only consider the case of a GCN with
two layers with single channels, corresponding to scalar
weights. We analyse the same cases as before, constant
weight and variable weights. We note that, for scalar case
erf(p, i) = (∇LX)i =

∂Yp

∂Xi
.

Scalar weights. By considering a single channel c = 1 in
Eq. 51, the ERF of the GCN in the ReLU case is given by:

∇L(l)
X = AT (∇L(l+1)

X � Z(l))wl ∈ Rn×1 (10)

∇L(L)
X = AT∇LY wL ∈ Rn×1

∇LY = (In):p ∈ Rn×1

Constant Weights. For a GCN with two layers, single
channel, with input X that is symmetrically distributed
around zero, we compute the expected value of the ERF
as follows:

EX [erf(p, i)] = EX [
∂Yp
∂Xi

] =
1

2
(A2)p,i

1∏
l=2

wl (11)

We can extend this to L layers where we obtain
( 12 )

L−1
(AL)p,i

∏1
l=L wl and observe that this is the same

ERF as in Equation 37, but it is weighted by 1
2

L−1 equally
reducing the importance of each location exponentially in
the number of layers. Thus the same order of importance is
maintained between node locations.

Random Weights. Same as in the case without ReLU, we
analyse the ERF for all possible weights wl sampled from
a standard Gaussian N (0, 1) in order to observe the bias of
the architecture. Firstly, we compute the expected value of
the ERF as follows:

EX,W [erf(p, i)] = EX,W [
∂Yp
∂Xi

]

= EX,W [Ap(Z �AT
i )w1w2)]

=
∑
k

ApkAkiE[Zkw1]E[w2] = 0 (12)

This way, we see that each component k in the expected
values of the effective receptive field is proportional to the
probability of reaching node i from node p in two steps,
by passing through each node k. Because of the symmetric
form of w around zero, same as before, the expected values
is zero, and we are interested in computing the variance.

The variance of the ERF depends on the probability of
reaching node i from node p in two steps Ap,uAu,i and also
on the covariance Cov(Zu, Zv) between the gates of each
pair of nodes u, v. The exact equations can be found in the
Appendix.

We have shown that the effective receptive field of Graph
Convolutional Networks depends on the input only by the
gating induces by the ReLU activation, and it is strongly in-
fluence by the probability of reaching the locations i starting
from p in L steps, as given byAL matrix. Thus the most im-
portant aspect for GCN regarding the ERF is the structure
of the graph.

3.2. ERF of Self-Attention layer

Given a fully connected graph G = (V,E), with nodes
ni arranged in a matrix X ∈ Rn×c, Self-Attention layer is
defined as:

Y = softmax

(
(XWq)(XWk)

T

√
c

)
(XWv) (13)

where Y ∈ Rn×c, and Wq,Wk,Wv ∈ Rc×c.
In computer vision tasks it has been shown [32] that the

softmax activation is not essential in Self-Attention layers,
thus we do not use it in our formulation. The dot product
similarity is only scaled by the number of nodes but, for
clarity, we omit it as it does not affect our results, since it
only uniformly scales every position in the ERF.

We follow the same steps as in the Graph Convolutional
Network case, firstly we compute the effective receptive
field, then investigate the architectural bias by observing the
behaviour of model while varying inputs and weights.

Theorem 3. In a Self-Attention layer, without softmax, the
effective receptive field of a node Yp with respect to every
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other nodeXi depends on the similarity between linear pro-
jections of the two nodes (XpWq)(XiWk)

T and the outer
product (XiWv)

T (XpWq).

By summation as in Equation 19 we obtain the ERF
from:

∂Yp
∂Xi

=WT
v (XpWq)(XiWk)

T+(XiWv)
T (XpWq)W

T
k ,

∀i 6= p (14)

∂Yp
∂Xp

=WT
v (XpWq)(XpWk)

T+(XpWv)
T (XpWq)W

T
k

+

n∑
j=1

(XjWv)
T (XjWk)W

T
q (15)

This way much higher importance is given to the self
location p, as the Equation 73 contains the two terms of
Equation 72 and also an outer product for each node in the
graph. This suggest that a more carefully normalisation of
the central location p should be made. We also observe this
discrepancy between the magnitude of the ERF of the cen-
tral node and the others in our experiments in Section 4.

In the following we consider the case of scalar weights to
analyse the expected effective receptive field when varying
the input and also the weights.

Constant Weights. For a given model with parameters
wq, wk, wv as scalar constant, we obtain the ERF from:

EX [erf(p, i)] = 2wqwkwvCov(Xp, Xi), ∀i 6= p

EX [erf(p, p)] = (n+ 2)wqwkwvV[Xp] (16)

The expected receptive fields, for each pair of nodes
(p, i) becomes proportional with the covariance between
their features. Because of this, although it can see all the
input, when the model is computing features for position
p, it takes more into account the nodes that are highly cor-
related with the p node. This suggest that Self-Attention
models does indeed take into account regions in the input
that are relevant for the current location, capturing complex
interactions in the scene more easily.

The position p in the input receives more importance, lin-
ear in the number of nodes, causing a discrepancy between
the central node p and other nodes i. In order to have the
same contribution to the output p, larger changes should be
made at input i compared to input p. This makes the model
somehow insensitive to locations in the input different from
the considered node.

Random weights. We will compute the expectation of the
effective receptive field with respect to the input and the pa-
rameters. In order to do this, we will make the same as-

sumptions as before, that the weights are randomly sam-
pled independently from a standard Gaussian wq, wk, wv ∼
N (0, I).

E[erf(p, i)] = 2EX,W [wqwkwv]Cov(Xp, Xi)

= 0, ∀p 6= i

E[erf(p, p)] = (n+ 2)EX,W [wqwkwv]V[Xp] = 0 (17)

The expected derivatives are again proportional with the
covariances between the nodes but, because the weights are
symmetric around zero, the final expected values is zero in
both cases. Thus, to be able to measure the expected re-
ceptive field when varying the weights of the model, we
compute the variance.

VX,W [erf(p, i)] = 4V[wqwkwv](Cov(X
2
p , X

2
i ) + V2[Xp])

VX,W [erf(p, p)] = (n+ 8)V[wqwkwv](V[X2
j ] + V2[Xj ])+

+ V[wqwkwv]
∑∑
j,l;l 6=p

bjbl(Cov(X
2
j , X

2
l ) + V2[Xj ])

where we denote bi = 1,∀i 6= p and bp = 3 (18)

For the case when p 6= i, the variance depends on the
covariance between the squared features of the nodes p and
i and the variance of the central node p. Thus the order of
importance for input nodes i is given by their covariance
with the input node p. Similar, the importance of the input
node p depends on its variance, but also on the covariance
between all pairs of input nodes.

In this section we have proved that, for Graph Convo-
lutional Networks, the effective receptive field depends on
the probability of reaching each node in L steps, starting
from the considered node p. For the Self-Attention case,
the effective receptive field for the node p depends on the
covariance between all the input features i and the input p.

Large effective field can be achieved in both graph mod-
els. Self-Attention has by default connections between
all locations, weighted by the correlations between them
whereas, for the GCN, we can capture long range influ-
ences by connecting distant nodes in the adjacency matrix.
Self-Attention could be made more local, by masking the
similarity matrix (XWq)(XWk)

T , thus only considering a
subset of connections.

Convolutional networks have local effective receptive
field, Gaussian distributed [25], thus they are appropriate
for cases where all the needed information is concentrated
in a local neighborhood. In contrast, graph methods are
suited for cases where there are non-local interactions that
should be modeled. GCN is preferred in cases where a
structure is known a priori, while Self-Attention is more
flexible and appropriate when the similarity between node
features are relevant.
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Figure 1. For the synthetic data experiment, we show the covariance of the input data and the ERF and covariance of intermediate features
of the three models at different layers. We always consider the same point (situated in the upper left corder) for computing both the ERF
and the covariances. We observe that for Self-Attention the effective receptive field follows the correlations in the input and that for GCN
model it represents the probability of reaching each node according to its adjacency matrix.

4. Experiments

We compared the performance and the effective recep-
tive field for GCN, Self-Attention and convolutional net-
work in three sets of experiments. Firstly, we generate ran-
dom data with a certain correlation to empirically confirm
our theoretically result that Self-Attention layers have ef-
fective receptive fields that follows the correlation of the
input. Then, we measure the performance and the ERF on
two datasets, where relations are essentials, one for video
classification task and the other for image question answer-
ing.

4.1. Syntetic correlations

We designed a set of experiments that tests our theoreti-
cally proven claim that the Self-Attention layer has effective
receptive field influenced by the correlations in the input
features. We also want to see if our claim generalized for
multiple layers.

In natural images, there is a strong bias towards local-
ity, with high correlations between neighbouring pixels. We
created a synthetic dataset with random pixels, where the
covariance of each pixels with all of the others follows a
mixture of two Gaussian, one centered in the pixel location
and the other centered in a distant point, as seen in Figure 1
for a considered pixel. This way we could investigate if the
models are able to capture such long range influences in the
input.

Each sample is a H × W map, with C independently
channels, where H = W = 21 and C = 32. The correla-
tion between a pixel p = (h0, w0) and every other pixel is
the same at every channel.

In order to observe the bias of the architectures, we com-
pute the effective receptive field of different randomly ini-
tialised models. We obtain the ERF by computing the gra-
dients of the output feature yp with respect to all the in-

put features xi and summing all the channels as in Equa-
tion 20. Because we are interested to observe the relative
magnitudes of the ERF, we normalise it by its sum.

We compare three types of models: convolutional net-
work, Self-Attention and graph convolutional networks. We
create one convolutional neural network with 9 layers, with
stride 1 and 24 filters, a Self-Attention network with 2 lay-
ers 256 hidden channels and one GCN with 9 layers, all of
them receiving as input the raw data.

For each model, at each layer, we sum the activation
maps and compute the covariance between the considered
node p and every other location of the resulting map. For
self attention and convolutional network, at the forward
pass, the covariance is mainly preserved in all the layers
as shown in Figure 1. For better visualization, we show the
ERF of Self-Attention model twice, once in the log-scale
and once by ignoring the considered node used for the ERF.

We compute the effective receptive field for every sample
in the dataset and calculate the average across the dataset.
For the convolutional network, the computed ERF is Gaus-
sian, in agreement with the proven claim in [25]. We com-
puted the ERF at the forth and the ninth layer of the network
and, as expected, we observed that the ERF increased with
the number of convolutional layers.

For the Self-Attention model, we also compute the ef-
fective receptive field and observe that it agrees with our
theoretical findings, more specific it follows the covariance
of the input. Also, the Equations 84, 18, are reflected in the
experimental results, as the ERF has a much larger value in
the central p position. We observed that the same conclu-
sions maintain for two layers of Self-Attention.

We create a GCN model, with a special adjacency ma-
trix, that connects each node to its 4 neighbours in the grid
and also with a single distant pixel. Because there are two
separate regions connected by the graph, the features pro-
duced at their locations become correlated, as shown in Fig-
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Figure 2. We present the effective receptive field for different models. Each column represents a model, and we consider input data from
two subsets of the dataset, one with digits moving different in every video and one with different digits following the same pattern in every
video. We observe that Self-Attention models and GCN have larger ERF.

ure 1 b). In agreement with Equation 57, the ERF at layer
L represents the probability to reach each position, starting
from the considered node. In this case, our artificial struc-
tured imposed in the graph connectivity is observed in the
ERF, ignoring the real distribution of the data.

4.2. SyncMNIST experiments

In this set of experiments we want to compare the be-
haviour of convolutional methods and graph methods on a
simple video dataset, where interactions between entities at
various locations play a crucial role. We want to observe
the distribution of effective receptive fields of these models,
and how it affects their final performance.

For this, we use the SyncMNIST [26] dataset and adapt
it in order to create multiple tasks of increasing difficulty. It
contains videos of moving digits in a scene, and the task is
to find a pairs of digits that moves synchronously, resulting
in a classification task with 46 classes. Each video consists
of 10 frames, of size 128×128, created by moving digits of
size 14× 14 on a uniform background. We use videos with
5 moving digits, with two of them moving synchronous.

We create 4 datasets of 600K videos, each of them hav-
ing a maximum distance of 20, 60, 80 or 100 pixels be-
tween synchronously digits . We analyse the results on each
datasets and see that graph methods maintain their perfor-
mance regardless of the distance between digits, while con-
volutional models decrease their performance with the dis-
tance between digits.

We experiment with three main architectures. The first
one is a 3D convolutional model, I3D [6] adapted from a
smaller ResNet [18] model in order to fit with our task.
The others are graph methods, a Self-Attention model and
a GCN, that use the I3D model as a backbone.

I3D We create two variants of I3D-ResNet. The first one,
denoted as I3D-S has 3 stages, each having 2 blocks result-
ing in 4.1M parameters while the second one, denoted as
I3D-L has 3 stages, each with 3 blocks for a total of 6.1M
parameters.

Self-Attention We use as a backbone model the I3D-S
model defined above and Self-Attention layers to process its
intermediate layers. Following the Non-Local [32] method,
we insert Self-Attention layers in the I3D, after the second
stage, using a residual connection. As we are only interested
in the spatial processing of the Self-Attention, we process
each time step of the features independently, but with the
same Self-Attention parameters.

The res3 ∈ R5×16×16×128 features from I3D are pro-
jected into a smaller 32 dimensions and normalized using
BatchNorm [20]. For each time step, the features are pro-
cessed independently, using a Self-Attention model with
two layers and 32 channels, projected back to the initial
128 dimension and normalized before adding them with a
residual connection to the res3 I3D features. The resulting
features are passed through the rest of the I3D model.

GCN We use the same pipeline as above, with the same
I3D-S used as backbone, but replace Self-Attention with
GCN layers. We use a GCN with two layers with 32 fea-
tures to aggregate the I3D intermediate features and use a
fully-connected adjacency matrix.

4.2.1 Results

We show the performance of our models in Figure 3, each
line representing the accuracy of a model on all datasets. We
observe that both convolutional I3D models have a drop in
performance when the synchronous digits are far apart, with
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Figure 3. Results on SyncMNIST datasets. We observe that the
I3D models have a drop in performance on the datasets with longer
distance between synchronous digits, while graph methods are
much more stable, being unaffected by the distance.

I3D-S having a larger decrease due to its smaller receptive
field. On the other hand, the two graph models are more
stable in their performance, without being affected by the
distance between digits.

In Figure 2 we present the effective receptive field for
our models, always computed from the center of the frame
in the middle of the video. They are calculated with respect
to the input image, with the exception of Self-Attention and
GCN columns, where we show the ERF with respect to the
input received by the graph layers. We average the maps
on two subsets of our datasets, one being the evaluation set
and the other where various digits are moving using the ex-
act same patterns in all videos. On the random subset, we
observe the general reach of the ERF, whereas on the same
moving patterns we see more clearly the influence of spe-
cific regions for each model.

For the convolutional models, represented by I3D-S and
I3D-L in our experiments, the effective receptive field is
Gaussian and become spreader after training. The GCN
has constant uniform ERF, since it has connections between
each locations.

We can see that the Self-Attention also covers the en-
tire input, with its ERF. For the random subset, the ERF is
higher in the considered node, since on average it correlates
more with itself. It is interesting to note that Self-Attention
gives a higher importance to the location of the digit that is
indeed in sync with the digit in the center of the video.

4.3. Sort-of-CLEVR

We conduct experiments on Sort-of-CLEVR dataset, to
observe the differences in performance between the Self-
Attention and the convolutional models, on a task based on
long distance relations between entities.

Sort-of-CLEVR dataset [28] is a simplified version of the

CLEVR[22] dataset, used in visual question answering task.
It contains 10000 images. each one with 6 objects of differ-
ent colors assigned with a randomly chosen shape: square
or circle. For each image, a set of 20 questions, splitted in
10 relational questions and 10 non-relational questions, are
annotated with the appropriate answer. The relational set of
questions are especially designed such that, in order to be
able to infer the right answer, the model should be able to
understand the relationship between the queried object and
the rest of the scene.

For our experiments, we create a backbone model, con-
sisting of 2 convolutional layers, each one followed by a
Batch Normalization. For the convolutional neural network,
the features extracted from the backbone model are con-
catenated with the embedding of the question and used as
input for two additional convolutional layers. The result-
ing map are linearized and used to predict the answer. We
trained two versions of convolutional networks using dif-
ferent stride in the convolutional layers. In this way, the to
models have significantly different receptive field. In Ta-
ble 1 we denoted by Conv-S the model with smaller effec-
tive receptive field, and by Conv-L the other one.

For the Self-Attention model, we create a completely
connected graph from the features extracted using the back-
bone model. Each node receives information from a spe-
cific location of the activation map, together with the em-
bedding of the question. The graph is processed using one
Self-Attention layer, and the representation of the nodes are
then concatenated and used to obtain the prediction.

We trained all models in Tensorflow [1], with Adam op-
timizer, using both the relational and non-relational dataset
for training. We compare only the accuracy for the rela-
tional split, as we are interested to study the capabilities of
the models to capture long range interactions.

In Table 1 we show the results for the 2 versions of con-
volutional networks and for the Self-Attention network. We
observe that the Self-Attention model obtain the best results
with an improvement of 7.5%, since it is the only model that
covers the entire image from the first layer. Between the two
convolutional network, the one with the broader receptive
field obtain better results even if the number of weights are
smaller due to the reduced activation map used in the final
fully connected layer. This results suggests a larger ERF is
essential in tasks involving relations between entities.

5. Conclusion
In this paper we analysed the effective receptive field for

two types of graph neural networks Graph Convolutional
Network, and Self-Attention. We have shown that the two
models achieve good performance on tasks where distant
connections are essential. We proved that for Graph Con-
volutional Networks the effective receptive field of a node
is dependent on the graph structure, more specific on the

8



Technical Report 2019

Model Accuracy - relational
Conv-S 54.4
Conv-L 73.3
Self-Attention 81.8

Table 1. Comparison between Self-Attention and convolutional
networks on the relational split of the Sort-of-CLEVR dataset. The
order of the models correlates with the ranking given by the dimen-
sion of the effective receptive field.

probability of reaching each input node starting from the
considered one. For Self-Attention layers, we proved that
the effective receptive field follows the correlation between
the considered node and all the others and we empirically
validate our findings.
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Appendix: Effective Receptive Field of Graph Neural Networks

In the following, we give complete proofs of all the re-
sults presented in the main paper.

A. Notations
Throughout our paper we use the following notations:

• Mi is the i-th line of matrix M .

M:i is the i-th column of matrix M .

• vec(M) is the vectorized form of the matrix M :

M = [MT
1 ;MT

2 ; ..MT
n ] ∈ Rn×m

vec(M) = [MT
1 ,M

T
2 , ..M

T
n ] ∈ Rnm

• unless otherwise specified X(1) := X , X(L+1) := Y

• ∇LM ∈ Rn×c is the gradient of a scalar loss function
w.r.t. matrix M ∈ Rn×c such that (∇LM )ij =

∂L
∂Mij

• ∇L(l)
X := ∇LX(l)

• V[W ] represents the matrix formed from the variance
of each element:

(V[W ])i,j := V[Wij ]

B. Effective receptive field of Graph Neural
Networks

erf(p, i) =
c∑

r=1

c∑
s=1

∂Ypr
∂Xis

(19)

By setting L =
∑

r Ypr, we obtain ∇LY a matrix with
the p-th line full of ones and zeros otherwise and we can
write the ERF as:

erf(p, i) =
c∑

s=1

(∇LX)is (20)

B.1. ERF of Graph Convolutional Networks

GCN is defined by:

X(l+1) = σ
(
AX(l)Wl

)
(21)

Y = AX(L)WL (22)

where σ denote the ReLU non-linearity.

Theorem 4. In a Graph Convolutional Network with L
layers, without ReLU non-liniarities, the effective receptive
field of an output node Yp with respect to every input node
Xi depends on the probability of reaching the Xi nodes
starting from Yp as in Equation 23.

We obtain the ERF using Equation 19 from:

∂Yp
∂Xi

= (AL)pi(

L∏
l=1

Wl)
T (23)

Proof. We know that for any matrices M1, X,M2 we have:

∂vec(M1XM2)

∂vec(X)
=MT

2 ⊗M1 (24)

where M1 ⊗M2 is the Kronecker product between the two
matrices.

A GCN without ReLU non-liniarities has the output:

Y = ALX

L∏
l=1

Wl (25)

Thus, by setting M1 := AL and M2 := (
∏L

l=1Wl)

∂vec(Y )

∂vec(X)
= (

L∏
l=1

Wl)
T ⊗AL (26)

By selecting an element from the derivative, in turn we
select a block from the Kronecker product:

∂Yp
∂Xi

= (

L∏
l=1

Wl)
T ⊗ (AL)pi (27)

∂Yp
∂Xi

= (AL)pi(

L∏
l=1

Wl)
T (28)

Corollary 1. Alternatively, in the same conditions as The-
orem 4, we can obtain the ERF from:

∇LX = (AL)T∇LY (

L∏
l=1

Wl)
T (29)

Proof. We begin by giving some helping remarks.

Remark 1. For Y = XW , where X ∈ Rn×c and W ∈
Rc×c, with given∇LY ∈ Rn×c:

∇LX = ∇LYW
T (30)
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Proof.
∂L
∂Xis

=

n∑
q=1

c∑
r=1

∂L
∂Yqr

∂Yqr
∂Xis

(31)

Since, in this case, every line Yi of output is a linear pro-
jection of the corresponding line Xi of the input, we have
∂Yqr

∂Xis
is zero for q 6= i, resulting in:

∂L
∂Xis

=

c∑
r=1

∂L
∂Yir

∂Yir
∂Xis

=

c∑
r=1

∂L
∂Yir

∂(
∑

kXikWkr)

∂Xis
=

c∑
r=1

∂L
∂Yir

Wsr

=

c∑
r=1

(∇LY )irW
T
rs = (∇LYW

T )is

Remark 2. For Y = AX , where X ∈ Rn×c and A ∈
Rn×n, with given∇LY ∈ Rn×c:

∇LX = AT∇LY (32)

Proof.
∂L
∂Xis

=

n∑
q=1

c∑
r=1

∂L
∂Yqr

∂Yqr
∂Xis

=

c∑
q=1

∂L
∂Yqs

∂Yqs
∂Xis

=

c∑
q=1

∂L
∂Yqs

Aqi

=

c∑
q=1

(AT )iq(∇LY )qs = (AT∇LY )is

Remark 3. For Y = AXW , where X ∈ Rn×c and W ∈
Rc×c, A ∈ Rn×n, with given∇LY ∈ Rn×c:

∇LX = AT∇LYW
T (33)

Proof. Let X2 = AX , resulting in Y = X2W and from
Remark 2:

∇LX2
= ∇LYW

T (34)

From X2 = AX and Remark 1 we have:

∇LX = AT∇LX2 = AT∇LYW
T (35)

For Y = ALX
∏L

l=1Wl, by using the previous remark
with A := AL and W :=

∏L
l=1Wl we obtain:

∇LX = (AT )L∇LY (

L∏
l=1

Wl)
T (36)

Constant weights. For a GCN with constant weights
W = Jc, a c × c all-ones matrix, the expected values of
the ERF, by varying the input, is given by:

EX [erf(p, i)] = c(L+1)(AL)p,i (37)

Proof. By setting Wl = Jc Equation.23 becomes:

∂Yp
∂Xi

= (AL)p,i(

L∏
l=1

Jc)
T = (AL)p,i(c

(L−1)Jc) (38)

erf(p, i) =
c∑

r=1

c∑
s=1

(
∂Yp
∂Xi

)r,s = (AL)p,ic
(L+1) (39)

The erf(p, i) is independent of the input X , obtaining:

EX [erf(p, i)] = (AL)p,ic
(L+1) (40)

Random weights. We consider a GCN with random
weights, sampled independently from a standard Gaussian
Wl ∼ N (0, I). We compute the expected values of the
ERF over all the inputs and all possible weights.

EX,W [erf(p, i)] = 0 (41)

VX,W [erf(p, i)] = c(L+1)[(AL)p,i]
2 (42)

Proof.

EX,W [erf(p, i)] =
c∑

r=1

c∑
s=1

(AL)p,iE[
1∏

l=L

WT
l ]r,s (43)

Since Wij is independent from Wlk ∀i, j, k, l and are all
centered in zero, EW [WT

l ] = 0 we get:

E[
1∏

l=L

WT
l ] =

1∏
l=L

EW [WT
l ])] = 0 (44)

Thus,

EX,W [erf(p, i)] =
c∑

r=1

c∑
s=1

(AL)p,i · 0 = 0 (45)

For computing the variance, we demonstrate the follow-
ing lemmas.

Lemma 1. Given two scalar independent random variables
w1, w2 ∈ R, w1 |= w2 with E[w1] = E[w2] = 0, we have
V[w1w2] = V[w1]V[w2].

Proof.
V[w1w2] = E[w2

1w
2
2]− E2[w1w2] = E[w2

1]E[w2
2]

Since we assume E[wi] = 0 we obtain V[w1] = E[w2
1]:

V[w1w2] = V[w1]V[w2] (46)
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Lemma 2. Given two random variablesA,B ∈ Rn×n with
independent elements and with Aij |= Bab ∀(i, j, a, b) and
E[A] = E[B] = 0, then the elementwise variance is:

V[AB] = V[A]V[B] (47)

Proof. For all indices (i, j) we have that:

(AB)i,j =
∑
s

(AisBsj)

From the hypothesis (AisBsj) |= (AirBrj) ∀s 6= r

V[(AB)i,j ] =
∑
s

V[AisBsj ] =
∑
s

V[Ais]V[Bsj ]

= (V[A]V[B])i,j (48)

To finish the proof, we need to show that if (Wi) are in-
dependent matrices, each one having independent elements,
then

∏L
k=1Wk has independent elements.

Lemma 3. Given two random variablesA,B ∈ Rn×n with
independent elements and withAij |= Bab ∀(i, j, a, b) then
(AB)ij |= (AB)a,b ∀(i, j) 6= (a, b)

Proof. We want to prove that Cov((AB)ij , (AB)ab) = 0,
∀(i, j) 6= (a, b). By symmetry, we only consider the case
j 6= b. Since the covariance is biliniar:

Cov((AB)ij , (AB)ab) =
∑
s

∑
r

Cov(AisBsj , AarBrb)

= E[AisBsjAarBrb]− E[AisBsj ]E[AarBrb]

= E[AisBsjAar]E[Brb]− E[AisBsj ]E[Aar]E[Brb]

= 0− 0 = 0

From Lemma 3 the elements of
∏L

k=1Wk are indepen-
dent. Because V(a+ b) = V[a] + V[b] for a |= b we obtain:

V[erf(p, i)] = V
[∑

s

∑
r

(AL)p,i(

L∏
k=1

Wk)s,r
]

= ((AL)p,i)
2
∑
s

∑
r

V
[
(

L∏
k=1

Wk)
]
s,r

(49)

Based on Lemma 2, if Wi,Wj are independent matrices
with each pair of elements (Wi)ab |= (Wj)cd, all of them
centered in zero, we have that:

V
[ L∏
i=1

Wi

]
=

L∏
i=1

V[Wi] (50)

V[erf(p, i)] = ((AL)p,i)
2
∑
s

∑
r

(

L∏
k=1

V[Wk])s,r

= ((AL)p,i)
2
∑
s

∑
r

(

L∏
k=1

Jc)s,r

= ((AL)p,i)
2
∑
s

∑
r

c(L−1)

= c(L+1)((AL)p,i)
2

Theorem 5. In a Graph Convolutional Network with L lay-
ers with ReLU non-linearities, the effective receptive field of
an output node Yp with respect to every input node Xi de-
pends on the probability of reaching the Xi nodes starting
from Yp as in Equation 51.

We obtain the ERF using Equation. 20 from:

∇L(l)
X = AT (∇L(l+1)

X � Z(l))WT
l (51)

∇L(L)
X = AT∇LYW

T
L

Z(l) = I(AX(l)Wl > 0)

Proof. At forward, GCN is defined as:

X(l+1) = σ
(
AX(l)Wl

)
=
(
AX(l)Wl

)
� Z(l)

Y = AX(L)WL, (52)

Let D(l) := AX(l)Wl.

∂L
∂D

(l)
is

=

n∑
q=1

c∑
r=1

∂L
∂X

(l+1)
qr

∂X
(l+1)
qr

∂D
(l)
is

(53)

Since D(l) is formed by applying elementwise the ReLU
non-linearity on X(l), in the equation above all the terms
with p 6= i or r 6= s are zero.

∂L
∂D

(l)
is

=
∂L

∂X
(l+1)
is

∂X
(l+1)
is

∂D
(l)
is

=
∂L

∂X
(l+1)
is

Z
(l)
is = (

∂L
∂X(l+1)

� Z(l))is

∇L(l)
D = ∇L(l+1)

X � Z(l) (54)

From Remark 3 and the definition of D(l), we have:

∇L(l)
X = AT∇L(l)

D WT = AT (∇L(l+1)
X � Z(l))WT

From Remark 3 and Equation 52 we obtain:

∇L(L)
X = AT∇LYW

T
L

13
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Scalar weights. For a single channel c = 1, the effective
receptive field of the GCN in the ReLU case is given by:

∇L(l)
X = AT (∇L(l+1)

X � Z(l))wl (55)

∇L(L)
X = AT∇LY wL

∇LY = (In):p

In the case of scalar weights, L = Yp, thus

(∇LX)i =
∂Yp
∂Xi

= erf(p, i) (56)

Constant Weights. For a GCN with two layers, single
channel, with input X that is symmetrically distributed
around zero, we compute the expected value of the ERF
by varying only the input and keeping the weights fixed, as
follows:

EX [erf(p, i)] = EX [
∂Yp
∂Xi

] =
1

2
(A2)p,i

1∏
l=2

wl (57)

Proof. From Equation 55 we have:

erf(p, i) = (∇LX)i = (AT
(
(AT∇LY w2)� Z

)
w1)i,

(58)

We use that ∇LY = (In):p:

erf(p, i) = AT
i

(
Ap � Z

)
w2w1,

=
∑
k

AT
ik

(
Ap � Z

)
k
w2w1

=
∑
k

AkiApkZkw2w1 (59)

We assume that for all k, Xk is symmetric and zero cen-
tered, thus (AXW )k is symmetric and zero centered for all
k This results in Zk being Bernoulli distributed, with equal
probability thus E[Zk] =

1
2 .

We obtain that:

E[erf(p, i)] = E[
∑
k

AkiApkZkw2w1]

=
∑
k

AkiApkw2w1E[Zk] =
1

2
(A2)p,iw2w1 (60)

Constant Weights Multiple Layers. We now give a gen-
eralisation of the previous result for the case of GCN with
ReLU and L single channel layers, with input X that is
symmetrically distributed around zero and assuming ReLU
gates Z(l1) and Z(l2) are independent for every two layers
l1 6= l2.

EX [erf(p, i)] = (
1

2
)(L−1)(AL)p,i

1∏
l=L

wl (61)

Proof. From Equation 55 we have:

E[∇L(l)
X ] = E[AT (∇L(l+1)

X � Z(l))wl]

= ATE[(∇L(l+1)
X � Z(l))]wl

We assume that at each layer the input is symmetric
and zero centered and, like previously stated, this results
in E[Zl] =

1
2 . We also make the additional assumption that

Z(l1) andZ(l2) are independent for every two layers l1 6= l2,
thus Zl is independent of the gradient∇L(l+1)

X , obtaining:

E[∇L(l)
X ] = ATE[(∇L(l+1)

X ]� E[Z(l))]wl

=
1

2
ATE[(∇L(l+1)

X ]wl (62)

Based on this recursion and using Equation 55 we obtain:

E[∇LX ] = (
1

2
)(L−1)(AT )(L−1)E[(∇L(L)

X ]

1∏
l=L−1

wl

(63)

From Equation 55:

E[∇L(L)
X ] = AT (In):pwL

Using Equation 20, we obtain:

E[erf(p, i)] = E[∇LX ]i = (
1

2
)(L−1)(AT )Li (In):p

1∏
l=L

wl

= (
1

2
)(L−1)(AL)p,i

1∏
l=L

wl

Random Weights. For a GCN with two layers, sin-
gle channel, with wl sampled from a standard Gaussian
N (0, 1), assuming that the weights from the first layer w1

are independent from the ReLU gates on the first layer Z,
and the input Xk is symmetric and zero centered ∀k, we
have:

EX,W [erf(p, i)] =
n∑

k=1

ApkAkiE[Zkw1]E[w2] = 0 (64)

VX,W [erf(p, i)] =
n∑
k

n∑
l

ApkAkiAplAli(Cov(Zk, Zl) +
1

4
)

(65)

Proof. We use the Equation 55 and get:

∇LX = AT ((AT∇LY w2)� Z)w1

AT∇LY = (AT )(In):p = (AT ):p = Ap

14
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Using Equation 56 we obtain:

EX,W [erf(p, i)] = EX,W [(∇LX)i]

= E[(AT ((Apw2)� Z)w1)i]

= E[(AT )i((Apw2)� Z)w1]

= E[
n∑

k=1

(AT )ik(Ap � Z)kw2w1]

= E[
n∑

k=1

(AT )ikApkZkw2w1]

= E[
n∑

k=1

AkiApkZkw2w1]

=

n∑
k=1

ApkAkiE[Zkw2w1] (66)

Since the weights of the second layer w2 are zero centered
and are independent from the ReLU gates on the first later
Z, we obtain:

EX,W [erf(p, i)] =
n∑

k=1

ApkAkiE[Zkw1]E[w2] = 0 (67)

We obtain the variance of the ERF in the same way:

VX,W [erf(p, i)] = V[
n∑

k=1

ApkAkiZkw2w1]

=

n∑
k=1

V[ApkAkiZkw2w1]+

+

n∑ n∑
k,l;k 6=l

Cov(ApkAkiZkw2w1, AplAliZlw2w1)

=

n∑
k=1

(ApkAki)
2V[Zkw2w1]+

+

n∑ n∑
k,l;k 6=l

ApkAkiAplAliCov(Zkw2w1, Zlw2w1)

(68)

We use the fact that weights from the second layerw2 are
independent from weights from the first layer multiplied by
the ReLU gates from the first layer Zkw1.

We also assume that the weights from the first layer w1

are independent from the ReLU gates on the first layer Z

but this assumption usually does not hold.

V[Zkw2w1] = E[(Zkw2w1)
2]− E2[Zkw2w1]

= E[(Zkw1)
2]E[w2

2]− E2[Zkw1]E2[w2]

= E[Z2
kw

2
1]V[w2]− 0 = E[Z2

k ]E[w2
1]V[w2]

= (V[Zk] + E2[Zk])V[w1]V[w2]

=
1

2
(69)

We assume that for all k, Xk is symmetric and zero cen-
tered, thus (AXW )k is symmetric and zero centered for all
k, resulting in Zk being Bernoulli distributed, with equal
probability thus E[Zk] =

1
2 . Also the weights are sampled

from a Gaussian with variance equal to 1 and using the pre-
vious assumptions we have:

Cov(Zkw2w1, Zlw2w1) =

= E[ZkZlw
2
2w

2
1]− E[Zkw2w1]E[Zlw2w1]

= E[ZkZl]E[w2
2]E[w2

1]− E[Zkw1]E[w2]E[Zlw1]E[w2]

= E[ZkZl]V[w2]V[w1]

= E[Zk]E[Zl] + Cov(Zk, Zl)

=
1

4
+ Cov(Zk, Zl) (70)

Combining the previous three results, given in Equa-
tions 68 , 69 and 70 we obtain:

VX,W [erf(p, i)] =
1

2

n∑
k=1

(ApkAki)
2+

+

n∑ n∑
k,l;k 6=l

ApkAkiAplAli(Cov(Zk, Zl) +
1

4
)

=

n∑
k

n∑
l

ApkAkiAplAli(Cov(Zk, Zl) +
1

4
)

B.2. ERF of self-attention layer

We use the following form of self-attention layer:

Y = (XWq)(XWk)
T (XWv) (71)

Theorem 6. In a self-attention layer, without softmax, the
effective receptive field of a node Yp with respect to every
other nodeXi depends on the similarity between linear pro-
jections of the two nodes (XpWq)(XiWk)

T and the outer
product (XiWv)

T (XpWq).

We obtain the ERF using Equation 19 from:

∂Yp
∂Xi

=WT
v (XpWq)(XiWk)

T+(XiWv)
T (XpWq)W

T
k ,

∀i 6= p (72)
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∂Yp
∂Xp

=WT
v (XpWq)(XpWk)

T+(XpWv)
T (XpWq)W

T
k

+

n∑
j=1

(XjWv)
T (XjWk)W

T
q (73)

Proof. For this proof, we will use the following matrix
derivatives:

∂AxT

∂x
= A (74)

∂f(x)A

∂x
= AT ∂f(x)

∂x
(75)

∂axTx

∂x
= xT

∂AxT

∂x
+ axT

∂x

∂x
= xTa+ axT I (76)

where A ∈ Rn×n and x, a ∈ R1×n.
Case 1: p 6= i:

∂Yp
∂Xi

=
∂(XpWq)(XiWk)

T (XiWv)

∂Xi
(77)

Using Equations 75 and 76:

∂Yp
∂Xi

=
∂(XpWqW

T
k X

T
i Xi)Wv

∂Xi

=WT
v

∂(XpWqW
T
k )XT

i Xi

∂Xi

=WT
v (XpWqW

T
k )XT

i +WT
v X

T
i (XpWqWk)

Case 2: p = i:

∂Yp
∂Xp

=
∂(XpWqWkX

T
p Xp)Wv

∂Xp
+ S (78)

where S =
∑
j 6=p

∂(XpWqWkX
T
j Xj)Wv

∂Xp
(79)

Using the product rule we obtain : (80)

∂Yp
∂Xp

=WT
v

∂(XpWqW
T
k X

T
p )Xp

∂Xp
+ S

=WT
v (XpWqW

T
k X

T
p )
∂Xp

∂Xp
)+

+ (WT
v X

T
p

∂Xp(WqW
T
k X

T
p )

∂Xp
+ S

=WT
v XpWqW

T
k X

T
p +

+ (WT
v X

T
p (WqW

T
k X

T
p )

T ∂Xp

∂Xp
+

+WT
v X

T
p Xp

∂WqW
T
k X

T
p

∂Xp
) + S

=WT
v (XpWq)(XpWk)

T+

+ (XpWv)
T (XpWk)W

T
q +

+ (XpWv)
T (XpWq)W

T
k + S (81)

To compute the last term we use Equation 75:

S =
∑
j 6=p

∂Xp(WqWkX
T
j XjWv)

∂Xp

=
∑
j 6=p

(WqW
T
k X

T
j XjWv)

T

=
∑
j 6=p

((XjWv)
T (XjWk)W

T
q ) (82)

From Equations 81 and 82 we have:

∂Yp
∂Xp

=WT
v (XpWq)(XpWk)

T+

+ (XpWv)
T (XpWq)W

T
k +

+
∑
j

((XjWv)
T (XjWk)W

T
q ) (83)

Constant Weights. For a self-attention layer, with param-
eters wq, wk, wv as scalar constant and input X centered in
zero, having the same variance V[Xi] for all i, we have:

EX [erf(p, i)] = 2wqwkwvCov(Xp, Xi), ∀i 6= p

EX [erf(p, p)] = (n+ 2)wqwkwvV(Xp) (84)

Proof. Case 1: p 6= i
From Equation 72 we have:

EX [erf(p, i)] = EX [2wqwkwvXpXi]

= 2wqwkwvE[XpXi]

= 2wqwkwv[E[Xp]E[Xi] + Cov(Xp, Xi)]

= 2wqwkwvCov(Xp, Xi) (85)

We have used the fact that the the inputs X is zero centered,
meaning E[Xi] = 0,∀i.

Case 2: p = i
From Equation 73 we have:

EX [erf(p, p)] = E[
n∑

k 6=i

wqwkwvX
2
k + 3wqwkwvX

2
p ]

= wqwkwv

n∑
k 6=i

E[X2
k ] + 3wqwkwvE[X2

p ]

= wqwkwv(n+ 2)E[X2
p ]

= wqwkwv(n+ 2)(E2[Xp] + V[Xp])

= wqwkwv(n+ 2)V[Xp] (86)

Where we have used the fact that all the nodes have the same
expected E[Xi] = 0 values and variance V[Xi].

16



Technical Report 2019

We note that the following result is slightly different
from the one in the main article by having a different con-
stant scaling of some of the terms in Equation 88. This
doesn’t affect in any way our claims. We changed n − 1
into n+ 8 and we added the bjbl constants.

Random weights. For a self-attention layer with weights
randomly sampled independently from a standard Gaussian
wq, wk, wv ∼ N (0, 1) and with input X centered in zero,
having the same variance V[Xi] for all i, we have:

EX,W [erf(p, i)] = 2EX,W [wqwkwv]Cov(Xp, Xi)

= 0, ∀p 6= i

EX,W [erf(p, p)] = (n+ 2)EX,W [wqwkwv]V[Xp] = 0
(87)

VX,W [erf(p, i)] = 4V[wqwkwv](Cov(X
2
p , X

2
i ) + V2[Xp])

∀p 6= i

VX,W [erf(p, p)] = (n+ 8)V[wqwkwv](V[X2
j ] + V2[Xj ])+

+ V[wqwkwv]
∑∑
j,l;l 6=p

bjbl(Cov(X
2
j , X

2
l ) + V2[Xj ])

(88)

where we denote bi = 1,∀i 6= p and bp = 3.

Proof. Case 1: p 6= i
From Equation 72:

EX,W [erf(p, i)] = E[2wqwkwvXpXi]

Since the weights W are independent from the inputs X ,
we have:

EX,W [erf(p, i)] = 2E[wqwkwv]E[XpXi]

= 2E[wqwkwv](Cov(Xp, Xi) + EX [Xp]EX [Xi])

= 2E[wqwkwv]Cov(Xp, Xi) (89)

Case 2: p = i
From Equation 73, we have:

EX,W [erf(p, p)] = E[
n∑

k 6=i

wqwkwvX
2
k + 3wqwkwvX

2
p ]

=

n∑
k 6=i

E[wqwkwvX
2
k ] + 3E[wqwkwvX

2
p ]

=

n∑
k 6=i

E[wqwkwv]E[X2
k ] + 3E[wqwkwv]E[X2

p ]

Since we assume thatXi is centered in zero, E[Xi] = 0,
for all i we have:

E[X2
i ] = V[Xi] + E2[Xi] = V[Xi] (90)

Thus we obtain:

EX,W [erf(p, p)] =

=

n∑
k 6=i

E[wqwkwv]V[Xk] + 3E[wqwkwv]V[Xp]

= (n+ 2)E[wqwkwv]V[Xp] (91)

Case 1: p 6= i
Using the fact that the weights wqwkwv and the inputs

XpXi are independent, from Equation 72 we obtain:

VX,W [erf(p, i)] = V[2wqwkwvXpXi]

= (V[2wqwkwv] + E2[2wqwkwv])(V[XpXi] + E2[XpXi])

− E2[2wqwkwv]E2[XpXi]

= 4V[wqwkwv](V[XpXi] + E2[XpXi])

(92)

Using the fact that Xp and Xi have the same expected
values E[Xp] = E[Xi] = 0 and variance V[Xp] = V[Xi],
we obtain:

V[XpXi] = Cov(X2
p , X

2
i )+

+ (V[Xp] + E2[Xp])(V[Xi] + E2[Xi])− Cov2(Xp, Xi)

= Cov(X2
p , X

2
i ) + V2[Xp]− Cov2(Xp, Xi) (93)

We also get:

E2[XpXi] = (E[Xp]E[Xi] + Cov(Xp, Xi))
2

= Cov2(Xp, Xi) (94)

Using the previous three Equations we obtain:

VX,W [erf(p, i)] = 4V[wqwkwv](Cov(X
2
p , X

2
i ) + V2[Xp]

− Cov2(Xp, Xi) + Cov2(Xp, Xi))

= 4V[wqwkwv](Cov(X
2
p , X

2
i ) + V2[Xp]) (95)

Case 2: p = i
From Equation 73 we obtain:

VX,W [erf(p, p)] = V[2wqwkwvX
2
p +

∑
j

wqwkwvX
2
j ]

Lets denote bi = 1,∀i 6= p and bp = 3, and wqwkwv = wa

thus the previous Equation becomes:

VX,W [erf(p, p)] = V[
∑
j

bjwaX
2
j ]

=
∑
j

V[bjwaX
2
j ] +

∑∑
j,l;l 6=p

Cov(bjwaX
2
j , blwaX

2
l )

=
∑
j

b2j (E[w2
aX

4
j ]− E2[waX

2
j ])+

+
∑∑
j,l;l 6=p

bjbl(E[w2
aX

2
jX

2
l ]− E[waX

2
j ]E[waX

2
l ])

(96)
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Because the weightswq, wk, wv and the inputsXi are all
independent, we have:

E[wa] = E[wqwkwv] = E[wq]E[wk]E[wv] = 0 (97)

E[waX
2
i ] = E[wa]E[X2

i ] = 0, ∀i (98)

Thus, we obtain:

VX,W [erf(p, p)] =
∑
j

b2jE[w2
aX

4
j ] +

∑∑
j,l;l 6=p

bjblE[w2
aX

2
jX

2
l ]

=
∑
j

b2jE[w2
a]E[X4

j ] +
∑∑
j,l;l 6=p

bjblE[w2
a]E[X2

jX
2
l ]

= E[w2
a]
∑
j

bj(V[X2
j ] + E2[X2

j ])+

+ E[w2
a]
∑∑
j,l;l 6=p

bjbl(Cov(X
2
j , X

2
l ) + E[X2

j ]E[X2
l ])

= E[w2
a]
∑
j

bj(V[X2
j ] + V2[Xj ])+

+ E[w2
a]
∑∑
j,l;l 6=p

bjbl(Cov(X
2
j , X

2
l ) + V[Xj ]V[Xl])

(99)

Finally we have:

VX,W [erf(p, p)] = (n+ 8)E[w2
a](V[X2

p ] + V2[Xp])+

+ E[w2
a]
∑∑
j,l;l 6=p

bjbl(Cov(X
2
j , X

2
l ) + V2[Xj ])

VX,W [erf(p, p)] = (n+ 8)E[w2
qw

2
kw

2
v](V[X2

p ] + V2[Xp])+

+ E[w2
qw

2
kw

2
v]
∑∑
j,l;l 6=p

bjbl(Cov(X
2
j , X

2
l ) + V2[Xj ])

(100)

VX,W [erf(p, p)] = (n+ 8)V[wqwkwv](V[X2
p ] + V2[Xp])+

+ V[wqwkwv]
∑∑
j,l;l 6=p

bjbl(Cov(X
2
j , X

2
l ) + V2[Xj ])

(101)

Where bi = 1,∀i 6= p, bp = 3.
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