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1. Introduction

Deep learning methods are known for requiring large
amounts of data and high computing power. The few-
shot learning regime tries to overcome these drawbacks by
bringing innovations to the training method and optimiza-
tion objective, often extending to the field of meta-learning.
In classification tasks, there is an inherent structure between
the classes, that is implicitly learned in current methods
while in this work we model the relations between classes
more explicitly. We study how to adapt embeddings of a
new sample to the task context, given by centroids of the
samples in a support set, by modeling the interactions be-
tween them using Graph Neural Networks with attention
mechanisms.

2. Related Work

In few-shot setting, we have multiple classification tasks
with N classes, from a base set, each having only K (1 to
5) annotated examples. Using them we meta-learn how to
solve a new task with N novel, unseen classes. For a task,
the annotated samples are denoted as the support set and are
used to learn a classifier that is evaluated on a query set. The
difficulty is to transfer knowledge between tasks and learn
how to learn on the small support set in order to promote
generalization and reduce overfitting.

Non-parametric methods [Vinyals et al., 2016] and
[Snell et al., 2017] show good performance on the clas-
sification task by comparing the representation of a
query sample with the representations of the samples
in the support set using a metric. Optimization based
methods often define an inner loop and an out loop as in
[Finn et al., 2017]. In the inner loop an initial set of model
parameters θ are fine-tunned on the support set while in the
outer loop it makes predictions on the query set and uses
the gradient of the loss on the query set to backpropagate
through the inner loop optimization steps, to learn the
original parameters θ. Further, [Zintgraf et al., 2018] shows
that fine-tuning all the parameters in the inner-loop is prone
to overfitting and propose adapting only a special set of
context parameters to describe the current task.

Presented at Eastern European Machine Learning Summer School
(EEML 2020)

The early work [Vinyals et al., 2016] shows the impor-
tance of forming a context of a task by using the support
set. Follow-up work included the support set more tightly
in the query embedding function using attention mech-
anisms [Mishra et al., 2018] and graph neural networks
[Satorras and Estrach, 2018]. Using the context given
by the support set [Gidaris and Komodakis, 2018] gener-
ates final classification weights, while [Shi et al., 2019]
use known relations between the classes to produce bet-
ter graph networks embeddings. Similar to us, other
works modulate the features of a sample [Jiang et al., 2019,
Kang et al., 2019] but they do not consider the relations be-
tween the support set and current sample.

3. Out Method
Given a new task, it is hard to optimize the whole

model towards representations specific for every novel
class. Given the few data points, this would lead to-
wards non-robust features, as they could easily overfit
the new samples. This could be avoided by learning
only the final classification parameters W and methods
like [Rusu et al., 2019, Gidaris and Komodakis, 2018] have
been proposed to generate them given the labelled data in
the support set.

Differently, we adapt the activations of the model for
a new task by incorporating information received as in-
put from the labelled data in the support set of the cur-
rent task. We could modify the intermediate features
f lθ(x), at different layers l of a model fθ accordingly to
the current task by modifying the activations statistics. It
has been shown in the works of [Dumoulin et al., 2017,
Huang and Belongie, 2017] that you could transfer the style
between two images by matching the statistics of the fea-
tures at multiple levels, and similarly we make the features
of a new sample more distinctively for the current task.

We modulate the features of a sample x by using a scale
γ and shift β:

f̂θ(x) = fθ(x)� γ + β. (1)

If γ and β are determined by optimizable parameters, we
would arrive at a method similar to [Zintgraf et al., 2018]
where the context is learned by optimization. Orthogonally
to this approach, we estimate these parameters from the la-
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Figure 1. The GNN adapts the features fθ(x) to the context given
by the prototype statistics {pn}.

belled samples in the support set. This way, we take advan-
tage of the correlations between the current sample and the
support set in an explicit way.

The current activations fθ(x) are represented by their
spatial mean, and the context is represented by the proto-
types pn formed by averaging the spatial mean for all the
samples of each class Sn.

µx = µ(fθ(x)) =
1

HW

H∑
h=1

W∑
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1

K

∑
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µ(fθ(s)) (3)

We need to put the statistics of the query sample in the
context of the task, thus it is helpful to model the inter-
actions between them and the statistics of the prototypes.
Graph neural networks have a strong inductive bias to-
wards relational reasoning [Battaglia et al., 2018] thus they
are perfectly suited to achieve this, especially with an atten-
tion mechanism.

Support-Attention. We generate the γ and β parameters
by sending messages between the prototypes of the support
set and the current sample.

γ, β =

[
µx|softmax

(
(µxWq)(PWk)

T

√
C

)
(PWv)

]
W

(4)

where µx, γ, β ∈ R1×C , P ∈ RN×C , Wq,Wk,Wv ∈
RC×C and W ∈ RC×2C .

Support-Graph-Attention. We also experiment with a
message passing scheme in four steps: send messages from
support set to µx with the previous mechanism, the result-
ing node sends back linear message to all elements of the
support set then update the resulting nodes by self-attention,
and finally generate γ and β with the previous mechanism.
Different parameters are used in all the steps.

4. Experiments
To assess the performance of our model for few-shot

learning, we experiment on MiniImagenet dataset and

Table 1. Results of our model and our re-implementations of
MAML, CAVIA and ProtoNets on miniImagenet for 5-way 1-shot.

Model ConvNet-4-32 ConvNet-4-128

MAML 47.41 48.29
Cavia 46.01 49.44
Proto-Nets 49.09 51.33

Our Inner Att 48.04 49.81
Our Inner Graph 46.72 49.2
Our Proto Graph 50.23 52.38

Table 2. Results on the test set of miniImageNet for 5-way 1-shot.

Model Backbone 1-shot

Matching Nets [Vinyals et al., 2016] ConvNet-4-32 43.56± 0.84
Proto Nets [Snell et al., 2017] ConvNet-4-32 48.70± 1.84
MAML [Finn et al., 2017] ConvNet-4-32 48.07± 1.75
Cavia [Zintgraf et al., 2018] ConvNet-4-128 49.84± 0.68
GNN [Satorras and Estrach, 2018] 64-96-128-256 50.33± 0.36
LEO [Rusu et al., 2019] WRN-28-10 61.76± 0.08
SNAIL [Mishra et al., 2018] ResNet-12 55.71± 0.99
MetaOptNet [Lee et al., 2019] ResNet-12 62.64± 0.61

Ours ConvNet-4-32 50.23
Ours ConvNet-4-128 52.38

present some preliminary results. The proposed method to
adapt the intermediate features of a model is flexible and
could be used with any convolutional model and trained in
multiple ways. Similar to other works, we experiment with
two backbones having 4 convolutional layers, each with 32
or 128 channels. Similar to [Zintgraf et al., 2018], we train
the model using an inner loop but optimize only a subset
of the parameters. In the presented results, we trained only
the final classification layer in the inner loop. Following
[Snell et al., 2017], we also train the model by using the
cosine similarity between final layer prototypes. We com-
pare our method with our re-implementations of MAML,
CAVIA and Proto-Nets and show in Table 1 that the adapta-
tion is able to achieve improvements. We also compare with
recent methods in Table 2 and show competitive results with
methods using similar backbones.

5. Conclusion

We propose a method for learning in the few-shot setting
by considering architectures that are constrained to model
relations between the classes with graph neural networks.
In preliminary experiments we show that modulating the
features with graph models improves multiple backbones
trained in different ways.
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