Spuriosity Didn't Kill the Classifier: Using Invariant Predictions to Harness Spurious Features

Cian Eastwood^{*,1,2}, Shashank Singh^{*,1}, Andrei L. Nicolicioiu¹, Marin Vlastelica¹, Julius von Kügelgen^{1,3}, Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany; ²University of Edinburgh, United Kingdom; ³University of Cambridge, United Kingdom;

Summary

- We show when and how it is possible to safely harness spurious or unstable features without test-domain labels.
- We prove that predictions based on invariant or stable features provide sufficient guidance for doing so, provided that the stable and unstable features are conditionally independent given the label.
- We propose the Stable Feature Boosting (SFB) algorithm for optimally harnessing complementary spurious features without labels.

Motivation

Algorithm: Stable Feature Boosting (SFB)

Boosted joint predictor in domain *e*:

$$f^{e}(X) = C(f_{S}(X), f^{e}_{U}(X)) = C(h_{S}(\Phi_{S}(X)), h^{e}_{U}(\Phi_{U}(X)))$$

= $C(h_{S}(X_{S}), h^{e}_{U}(X_{U})).$

Learning goals:

- 1. f_S is a stable and calibrated predictor with good performance.
- 2. In a given domain e, f_U^e boosts the performance of f_S using complementary features $\Phi_U(X^e) \perp \!\!\!\perp \Phi_S(X^e) | Y^e$.

Objective function:

$$\begin{split} \min_{\Phi_S, \Phi_U, h_S, h_U^e} \sum_{e \in \mathcal{E}_{tr}} R^e(h_S \circ \Phi_S) + R^e(C(h_S \circ \Phi_S, h_U^e \circ \Phi_U)) \\ &+ \lambda_S \cdot P_{\text{Stability}}(\Phi_S, h_S, R^e) + \lambda_c \cdot P_{\text{CondIndep}}(\Phi_S(X^e), \Phi_U(X^e), Y^e) \end{split}$$

Figure 1. Invariant (stable) and spurious (unstable) features.

- (a) Illustrative images from the CMNIST dataset.
- (b) CMNIST accuracies (y-axis) over test domains of decreasing color-label correlation (x-axis). The 'Oracle' uses both invariant (shape) and spurious (color) features optimally in the test domain, boosting performance over an invariant model (orange region). Our main contribution is to show how this can be done without labels.
- (c) Generally, invariant models use only the stable component X_S of X, discarding the spurious or unstable component X_U . We prove that predictions based on X_S can be used to safely harness a sub-component of X_U (dark-orange region), boosting test-domain performance.

Stable Features

Consider feature-label pairs (X, Y) drawn conditioned on domain E.

Definition: X is stable with respect to Y if $P_{Y|X}$ does not depend on the domain E; i.e., Y and E are conditionally independent given X.

Related Work

Method	Com	ponents of X Use	d		
	Stable	Complementary	All	Robust	No test-domain labels
ERM	 Image: A second s	\checkmark	\checkmark	×	\checkmark
IRM [1]	\checkmark	×	X		\checkmark
QRM [2]	\checkmark	√ *	*	*	\checkmark
DARE [4]	\checkmark	\checkmark	\checkmark		×
ACTIR [3]	\checkmark	\checkmark	X		×

Post-hoc calibration: Simple temperature scaling.

Test-domain adaptation: Apply previous Theorem to stable classifier h_S and unlabelled test-domain dataset $\{\Phi_S(x_i), \Phi_U(x_i)\}_{i=1}^{n_e}$.

Experiments

On **CMNIST** SFB can attain near-optimum performance across domains, with bias correction (BC) and calibration (CA) being essential.

Figure 2. CMNIST accuracies over test domains of decreasing color-label correlation. Oracle: ERM with labelled test-domain data. All other curves (but ERM) refer to our algorithm. 'Stable': unadapted, 'BC': bias-corrected, and 'CA': calibrated.

We experiment on synthetic data with an anti-causal (AC) or cause-effect with a direct X_S - X_U dependence (CE-DD) structure. $X_S \perp X_U | Y$ holds for the former, but not for the latter. We also evaluate real image datasets (PACS).

SFB (**Ours**) 🗸 🔏 🖌

Theorem: Test-Domain Adaptation

Consider three random variables X_S , X_U , and Y. Suppose

1. Y is binary ($\{0,1\}$ -valued) (this can be relaxed) 2. X_S is **informative** of Y: $X_S \not\perp Y$

3. X_S and X_U are **complementary** features for $Y: X_S \perp \!\!\!\perp X_U | Y$

Specifically, suppose $\hat{Y}|X_S \sim \text{Bernoulli}(\Pr[Y = 1|X_S])$ is a pseudo-label, $\varepsilon_0 := \Pr[\hat{Y} = 0|Y = 0]$ and $\varepsilon_1 := \Pr[\hat{Y} = 1|Y = 1]$ are the class-wise accuracies of these pseudo-labels. Then,

1. $\varepsilon_0 + \varepsilon_1 > 1$, 2. $\Pr[Y = 1|X_U] = \frac{\Pr[\hat{Y} = 1|X_U] + \varepsilon_0 - 1}{\varepsilon_0 + \varepsilon_1 - 1}$, and 3. For $C(a, b, c) = \sigma (\operatorname{logit}(a) + \operatorname{logit}(b) - \operatorname{logit}(c))$, we have

 $\Pr[Y = 1 | X_S, X_U] = C \left(\Pr[Y = 1 | X_S] \right), \Pr[Y = 1 | X_U], \Pr[Y = 1] \right).$

All of these quantities can be computed from joint distributions of (X_S, Y) and (X_U, \hat{Y}) .

Idea: Learn (X_S, Y) from training data, learn (X_U, \hat{Y}) from unlabeled test data, and then adapt using above formulas.

(a) AC

(b) CE-DD

Figure 3. Synthetic-data DAGs. Dashed lines for unobserved variables.

Table 1. Test-domain accuracies over 100 (Synthetic) and 5 (PACS) seeds.

	Synt	netic		PACS					
Algorithm	AC	CE-DD	Р	А	С	S			
ERM	9.9 ± 0.1	11.6 ± 0.7	93.0 ± 0.7	79.3 ± 0.5	74.3 ± 0.7	65.4 ± 1.5			
IRM	74.9 ± 0.1	69.6 ± 1.3	93.3 ± 0.3	78.7 ± 0.7	75.4 ± 1.5	65.6 ± 2.5			
ACTIR	74.8 ± 0.4	43.5 ± 2.6	94.8 ± 0.1	82.5 ± 0.4	76.6 ± 0.6	62.1 ± 1.3			
SFB w/o adapt	74.7 ± 1.2	74.9 ± 3.6	93.7 ± 0.6	78.1 ± 1.1	73.7 ± 0.6	69.7 ± 2.3			
SFB w. adapt	89.2 ± 2.9	88.6 ± 1.4	95.8 ± 0.6	80.4 ± 1.3	76.6 ± 0.6	71.8 ± 2.0			

Discussion

- Exploiting newly-available test-domain features without labels
- Weakening the complementarity condition

References

- [1] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimization, 2020. arXiv:1907.02893.
- [2] C. Eastwood, A. Robey, S. Singh, J. von Kügelgen, H. Hassani, G. J. Pappas, and B. Schölkopf. Probable domain generalization via quantile risk minimization. In *NeurIPS*, 2022.
- [3] Y. Jiang and V. Veitch. Invariant and transportable representations for anti-causal domain shifts. In *NeurIPS*, 2022.
- [4] E. Rosenfeld, P. Ravikumar, and A. Risteski. Domain-adjusted regression or: ERM may already learn features sufficient for out-of-distribution generalization. *arXiv preprint arXiv:2202.06856*, 2022.