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Summary

We show when and how it is possible to safely harness spurious or
unstable features without test-domain labels.
We prove that predictions based on invariant or stable features provide
sufficient guidance for doing so, provided that the stable and unstable
features are conditionally independent given the label.
We propose the Stable Feature Boosting (SFB) algorithm for optimally
harnessing complementary spurious features without labels.

Motivation
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Figure 1. Invariant (stable) and spurious (unstable) features.

(a) Illustrative images from the CMNIST dataset.
(b) CMNIST accuracies (y-axis) over test domains of decreasing color-label

correlation (x-axis). The ‘Oracle’ uses both invariant (shape) and spurious
(color) features optimally in the test domain, boosting performance over
an invariant model (orange region). Our main contribution is to show
how this can be done without labels.

(c) Generally, invariant models use only the stable component XS of X ,
discarding the spurious or unstable component XU . We prove that
predictions based on XS can be used to safely harness a sub-component
of XU (dark-orange region), boosting test-domain performance.

Stable Features

Consider feature-label pairs (X, Y ) drawn conditioned on domain E.
Definition: X is stable with respect to Y if PY |X does not depend on the
domain E; i.e., Y and E are conditionally independent given X .

Related Work

Method Components of X Used
Stable Complementary All Robust No test-domain labels

ERM 3 3 3 7 3
IRM [1] 3 7 7 3 3
QRM [2] 3 3∗ 3∗ 3∗ 3
DARE [4] 3 3 3 3 7
ACTIR [3] 3 3 7 3 7

SFB (Ours) 3 3 7 3 3

Theorem: Test-Domain Adaptation

Consider three random variables XS , XU , and Y . Suppose

1. Y is binary ({0, 1}-valued) (this can be relaxed)
2. XS is informative of Y : XS ⊥̸⊥ Y

3. XS and XU are complementary features for Y : XS ⊥⊥ XU |Y

Specifically, suppose Ŷ |XS ∼ Bernoulli(Pr[Y = 1|XS]) is a pseudo-label,
ε0 := Pr[Ŷ = 0|Y = 0] and ε1 := Pr[Ŷ = 1|Y = 1]

are the class-wise accuracies of these pseudo-labels. Then,

1. ε0 + ε1 > 1,

2. Pr[Y = 1|XU ] = Pr[Ŷ = 1|XU ] + ε0 − 1
ε0 + ε1 − 1

, and

3. For C(a, b, c) = σ (logit(a) + logit(b) − logit(c)), we have
Pr[Y = 1|XS, XU ]= C (Pr[Y =1|XS]), Pr[Y =1|XU ], Pr[Y =1]) .

All of these quantities can be computed from joint distributions of (XS, Y )
and (XU , Ŷ ).
Idea: Learn (XS, Y ) from training data, learn (XU , Ŷ ) from unlabeled test data,
and then adapt using above formulas.

Algorithm: Stable Feature Boosting (SFB)

Boosted joint predictor in domain e:
f e(X) = C(fS(X), f e

U(X)) = C(hS(ΦS(X)), he
U(ΦU(X)))

= C(hS(XS), he
U(XU)).

Learning goals:

1. fS is a stable and calibrated predictor with good performance.
2. In a given domain e, f e

U boosts the performance of fS using
complementary features ΦU(Xe)⊥⊥ΦS(Xe)|Y e.

Objective function:

min
ΦS,ΦU ,hS,he

U

∑
e∈Etr

Re(hS ◦ ΦS) + Re(C(hS ◦ ΦS, he
U ◦ ΦU))

+ λS · PStability(ΦS, hS, Re) + λc · PCondIndep(ΦS(Xe), ΦU(Xe), Y e)

Post-hoc calibration: Simple temperature scaling.
Test-domain adaptation: Apply previous Theorem to stable classifier hS and
unlabelled test-domain dataset {ΦS(xi), ΦU(xi)}ne

i=1.

Experiments

On CMNIST SFB can attain near-optimum performance across domains, with
bias correction (BC) and calibration (CA) being essential.
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Figure 2. CMNIST accuracies over test domains of decreasing color-label correlation.
Oracle: ERM with labelled test-domain data. All other curves (but ERM) refer to our
algorithm. ‘Stable’: unadapted, ‘BC’: bias-corrected, and ‘CA’: calibrated.

We experiment on synthetic data with an anti-causal (AC) or cause-effect with
a direct XS-XU dependence (CE-DD) structure. XS ⊥⊥ XU |Y holds for the
former, but not for the latter. We also evaluate real image datasets (PACS).

Figure 3. Synthetic-data DAGs. Dashed lines for unobserved variables.

Table 1. Test-domain accuracies over 100 (Synthetic) and 5 (PACS) seeds.

Synthetic PACS
Algorithm AC CE-DD P A C S
ERM 9.9 ± 0.1 11.6 ± 0.7 93.0 ± 0.7 79.3 ± 0.5 74.3 ± 0.7 65.4 ± 1.5
IRM 74.9 ± 0.1 69.6 ± 1.3 93.3 ± 0.3 78.7 ± 0.7 75.4 ± 1.5 65.6 ± 2.5
ACTIR 74.8 ± 0.4 43.5 ± 2.6 94.8 ± 0.1 82.5 ± 0.4 76.6 ± 0.6 62.1 ± 1.3
SFB w/o adapt 74.7 ± 1.2 74.9 ± 3.6 93.7 ± 0.6 78.1 ± 1.1 73.7 ± 0.6 69.7 ± 2.3
SFB w. adapt 89.2 ± 2.9 88.6 ± 1.4 95.8 ± 0.6 80.4 ± 1.3 76.6 ± 0.6 71.8 ± 2.0

Discussion

Exploiting newly-available test-domain features without labels
Weakening the complementarity condition
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