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» we want to design models that implicitly take advantage of
known biases in the data

» locality assumption: bias towards local interactions

» long-range assumption: distant entities interactions could
contribute in a significant way

» stationarity assumption: interactions are the same at every
position in the scene
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» graph models satisfy these assumptions
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» graph models satisfy these assumptions

» structure information as a graph'

» nodes represent regions in video
» edges represent interactlons between nodes

» graph models follow a general message passing framework!

'[Duvenaud et al. [2015]], [Battaglia et al. [2016]], [Kipf and Welling [2017]]
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1. send messages between neighbours

fsend(Vita Vjtyeij) (1)

2. gather messages from neighbourhood
mitt= ) M(vi.vf e)  (2)
weN (i)
3. update each node with received info

Vl-t+1 = update(Vita m,?H) (3)
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. send messages between neighbours

send( eIJ) (1)

. gather messages from neighbourhood

mtt= )" MV, v e)  (2)

weN (i)

. update each node with received info

VI-thl — update(Vita mf+1) (3)

. aggregate the whole graph

y =R('|ve G) (4)
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— > EXTRACTED RSTG
¥
TIME FEATURES PROCESSING

» we propose a neural graph model, recurrent in space and time
» extract video using backbone model
» create graph with information from video features

» process video by message-passing to get long range interactions
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» use features maps from a pretrained 2D / 3D backbone
» use feature at different scales

» each node receives info pooled from a region

1

EXTRACTED RSTG
TIME FEATURES PROCESSING
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» the nodes are connected if:

» they are neighbours in the grid
» their corresponding regions overlap

» thus we have a sparse graph

EXTRACTED RSTG
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TIME FEATURES PROCESSING
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» for video understanding we should model interaction:

» between entities from different regions (space)

» between entities at different time steps (time)

» we factorise our processing in two separate stages:

» Space Processing Stage: captures frame level information

» Time Processing Stage: captures information across time
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» model spatial interactions by exchanging messages

» the process involves 3 steps:

» send messages between all connected nodes
» gather information at each node

» update internal node representation
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» send:

» message should represent pairwise interaction
» message is a function of both source and destination

» the function is implemented as an MLP

feend(Vj, Vi) = MLPs([v;|vi]) € RP. (5)
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» be aware of nodes position

» use both nodes position as input of

fsend

» position is a gaussian centered in
node location
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» gather:

> aggregate messages by an attention mechanism
» use dot product as features similarity

fgather(vi) — Z Oz(Vj, Vi)fsend(vjy Vi) S RD- (6)
JEN(i)

a(vj, vi) = (Wa,vj) " (Wa,vi) € R. (7)

» update:

» incorporate global context into each local information

fopace (Vi) = MLP([Vi| fgather (vi)]) € R”. (8)
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» node: current spatial info + previous time step info

» update uses a recurrent function

» for more expressive power we alternate stages

» K alternating stages + a final time stage

htk

k t—1,k
I,time ftime(vi,spacev h, tlme) (9)
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» input: T x Hx W x C feature maps

> two types of output:

» RSTG-to-vec:

» a global vectorial representation of the video

» RSTG-to-map:

» a feature map further used by spatio-temporal models
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» obtain a vector used for the final classification
» use the nodes information from the final temporal step

» sum all the nodes into a global representation

EXTRACTED RSTG
—
TIME FEATURES PROCESSING
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» obtain 3D maps representation further processed with
spatio-temporal models

> symetric operation to the graph creation

» for each time step we project the nodes into their corresponding
region of the map

» sum the maps given by multiple scales

RSTG UPSAMPLED
PROCESSING FEATURES

19 /31
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» involves challenging relationships in space and time

» from a set of randomly moving digits find the pair that moves
synchronous

» 2 variants: 3SyncMNIST and 5SyncMNIST

Random Sync pair - (4,2)



Results on SyncMNIST: Ablation

We change parts of our model to investigate their contributions:

>
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Space-Only: mean-pooling as Time Processing Stage

Time-Only: mean-pooling as Space Processing Stage
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Homogeneous: use the same update function in space and time

1-temp-stage: just one final Time Processing Stage

All-temp-stages: interleaved stages

Positional All-temp: full model with positional embeddings

Table: Accuracy on SyncMNIST dataset, showing the capabilities of
different parts of our model.

Model 3SyncMNIST  5SyncMNIST
RSTG: Space-Only 61.3 -
RSTG: Time-Only 89.7 -
RSTG: Homogenous 95.7 58.3
RSTG: 1-temp-stage 97.0 74.1
RSTG: All-temp-stages 98.9 94.5
RSTG: Positional All-temp - 97.2
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Table: Accuracy on SyncMNIST dataset compared against powerful

baselines

Model 3 SyncMNIST 5 SyncMNIST
Mean + LSTM 77.0 -

Conv + LSTM 95.0 39.7

I3D [Carreira and Zisserman [2017]] - 90.6
Non-Local [Wang et al. [2018]] - 93.5
RSTG: All-temp-stages 98.9 94.5
RSTG: Positional All-temp - 97.2

N
N
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» Something-Something-v1: real world scenario involving complex
interactions

» 174 classes for fine-grained human-objects interactions

“Lifting up one end of something “Lifting up one end of something,
without letting it drop down” then letting it drop down”
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» two types of backbone:

» C2D:
» process each frame individually using 2D ConvNet

» use ResNet-50 pretrained on Kinetics dataset

» 13D:

> local spatio-temporal processing using 3D ConvNet

> use I3D [Carreira and Zisserman [2017]] inflated from
ResNet-50, pretrained on Kinetics dataset
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Something-Something v1: Ablation

Table: Ablation study showing where to
place the graph inside the 13D backbone.

el
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Table: RSTG-to-map res4

model

layer

input

13D

convl

pooll

res2

pool2

res3

res4

Model Top-1  Top-5
RSTG-to-vec 47.7 77.9
RSTG-to-map res2 46.9 76.8
RSTG-to-map res3 47.7 77.8
RSTG-to-map res4 48.4 78.1
RSTG-to-map res3-4  49.2 78.8

RSTG

Graph creation

Temporal Processing Stage
Spatial Processing Stage

Temporal Proctage

%3

Up-sample each grid
1x1x1conv

13D

resb

mean pool, fc
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Table: Top-1 and Top-5 accuracy on Something-Something-v1 on
validation split.

Model Backbone Top-1 Top-5
C2D 2D ResNet-50 31.7 64.7
TRN [Zhou et al. [2018]] 2D Inception 34.4 -
ours C2D + RSTG 2D ResNet-50 42.8 73.6
MFNet-C50 [Lee et al. [2018]] 3D ResNet-50 40.3 70.9
I3D [Wang and Gupta [2018]] 3D ResNet-50 41.6 72.2
NL 13D [Wang and Gupta [2018] ] 3D ResNet-50 44 .4 76.0
NL 13D + GCN [Wang and Gupta [2018]] 3D ResNet-50 46.1 76.8
ECO-Lite 16F [Zolfaghari et al. [2018]] 2D Inc+3D Res-18  42.2 -
MFNet-C101 [Lee et al. [2018]] 3D ResNet-101 43.9 73.1
13D [Xie et al. [2018]] 3D Inception 45.8 76.5
S3D-G [Xie et al. [2018]] 3D Inception 48.2 78.7

ours 13D 4+ RSTG 3D ResNet-50 49.2 78.8
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Conclusion vl & % 9

» we propose a novel computational model for learning in
spatio-temporal domain with a graph model recurrently in
both dimensions

» we factorize space and time and process them differently,
achieving low computational complexity

» we introduce a new synthetic dataset, with complex
Interactions

» we obtain state-of-the-art results on the challenging
Something-Something dataset
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