Mining for meaning: from vision to language through multiple networks consensus

Iulia Duță 1,2 , Andrei Nicolicioiu 1,3 , Vlad Bogolin 4 , Marius Leordeanu 1,3,4

iduta@bitdefender.com, anicolicioiu@bitdefender.com, vladbogolin@gmail.com, marius.leordeanu@imar.ro

- ¹Bitdefender, Romania ²University of Bucharest, Romania
- ³University Politehnica of Bucharest, Romania ⁴Institute of Mathematics of the Romanian Academy http://bit.ly/mining-for-meaning

1. Overview

Video captioning: describe videos in natural language

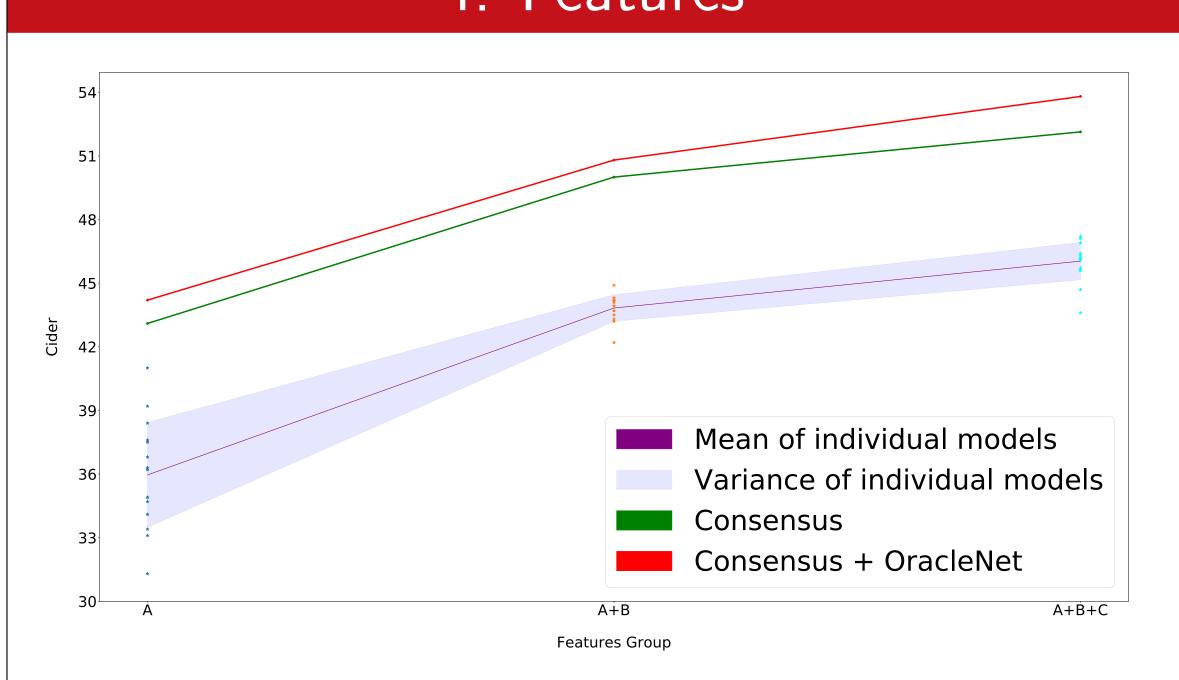
Our approach:

- obtain a diverse pool of generated sentences by:
 - varying the **video encoder** (TCN)
 - use sparse intermediate representations (Two-Stage)
 - leverage learning on additional tasks (Two-Stage, Two-Wings)
- use a selection method based on:
 - consensus among whole pool of sentences for a video
 - pairwise comparisons between sentences

Main Contributions:

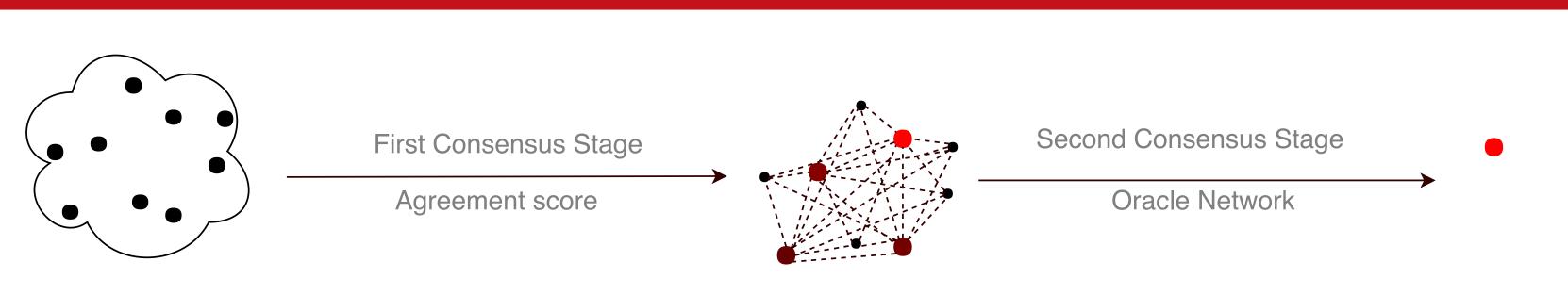
- propose a method for selecting a sentence that best describes a video
- propose **two novel architectures** and perform extensive tests with many others adapted from the literature
- achieve state of the art results on the MSR-VTT dataset

4. Features



- each additional set of features bring improvement compared to single model
- consensus brings substantial improvements regardless of features used

2. Consensus



Agreement score:

- select the sentences that agree most with the others
- agreement score: for each generated sentence, compute its CIDEr score against the others
- choose the top C sentences

Oracle Network:

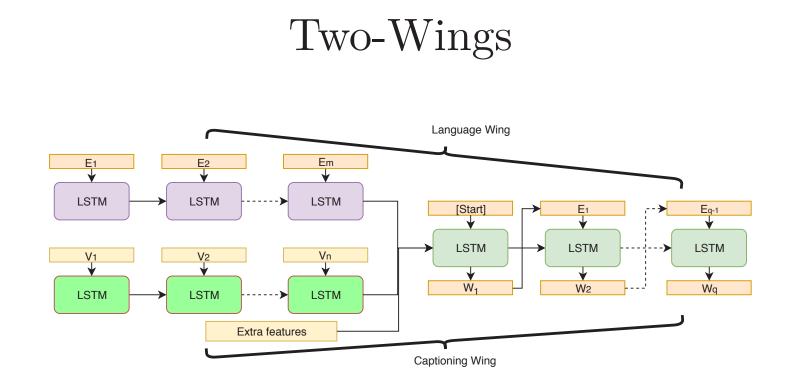
- train a network to choose between 2 sentences given a video
- pairwise comparisons between each sentence from top C and all the others from the pool
- final caption is the one with most wins

5. Results

	CIDEr	Meteor	Rouge	Bleu 4
v2t navig [1]	44.8	28.2	60.9	40.8
MT-Ent [2]	47.1	28.8	60.2	40.8
\mathbf{HRL} [3]	48.0	28.7	61.7	41.3
dense [4]	48.9	28.3	61.1	41.4
CIDEnt-RL [5]	51.7	28.4	61.4	40.5
TGM [6]	52.9	29.7	_	45.4
Ours	53.8	29.7	63.0	44.2

We obtain **state of the art** results on three evaluation metrics on MSR-VTT 2016 test set.

3. Architectures

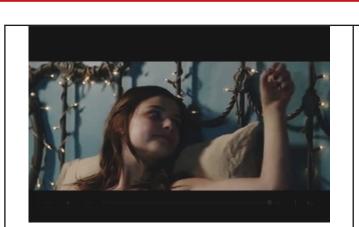


- goal: improve vocabulary of generated sentences
- improve language decoder by also learning a language reconstruction task
- use a separate branch (shared decoder) for optimizing on raw text -Wikipedia

TCN Extra features [Start] [Start] LSTM LSTM LSTM LSTM LSTM W1

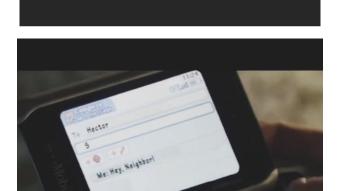
- goal: obtain a different video encoding
- use temporal convolution to aggregate features from neighbouring time steps
- encode the information hierarchy of dilated convolutional layers

6. Qualitative Results



Top generated captions:

- a girl is knocking on the wall and texting
- a girl laying in bed and knocking on the wal
- a girl is laying in bed and knocking on the wall a girl is knocking on a wall and texting



Human annotations:

- a girl in bed a girl knocking on a wall
- a girl lays in bed and uses her phone

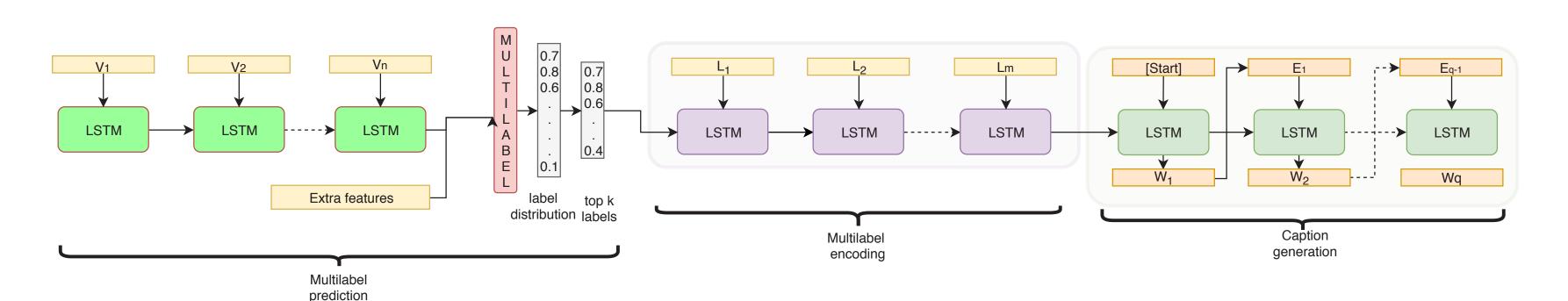
Top generated captions:

- a group of people are sitting in a line with a tiger
- a man is sitting in a chair with a tiger
- a man is talking about a tiger
- a man and a woman are sitting in a table

Human annotations:

a story about a family that has seven tigers five people sitting on a couch and a tiger laying by their feet

Two-Stage Network



- goal: use sparse representation of the video
- learn two stages of the model separately then fine-tune them jointly
- fist stage: learn to **predict set of labels** from video
- second stage: learn to construct sentences from a set of labels

7. References

[1] Jin et al., ACM MM 2016 [2] Pasunuru and Bansal, ACL 2017 [3] Wang et al., CVPR 2018 [4] Shen et al., CVPR 2017 [5] Pasunuru and Bansal, EMNLP 2017 [6] Jin et al., ACM MM 2017