On the DCI Framework for Evaluating **Disentangled Representations:** Extensions and Connections to Identifiability

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany; ²University of Edinburgh, United Kingdom; ³University of Cambridge, United Kingdom; ⁴Technical University of Denmark, Copenhagen, Denmark.

Summary

- We connect the DCI scores of Eastwood and Williams (2018, [1]) to two common notions of linear and nonlinear identifiability.
- We introduce a new complementary notion of disentanglement based on the functional capacity required to use a representation.

Notation & Background

- Data-generating factors:
- Observations:
- Representation or code:

The DCI framework [1] quantitatively evaluates a representation or *code c* by:

- 1. Training a probe f to predict \boldsymbol{z} from \boldsymbol{c} , i.e., $\hat{\boldsymbol{z}}=$ f(c) = f(r(x)) = f(r(g(z)));
- 2. Quantifying f's prediction error and deviation from an ideal one-to-one mapping.

 $oldsymbol{z} \in \mathbb{R}^{K}$

 $oldsymbol{x} = g(oldsymbol{z}) \in \mathbb{R}^D$

 $\boldsymbol{c} \!=\! r(\boldsymbol{x}) \in \mathbb{R}^L$

Definition. $R \in \mathbb{R}^{L \times K}$ is called a matrix of relative importances of c for predicting \boldsymbol{z} via $\hat{\boldsymbol{z}} = f(\boldsymbol{c})$ if R_{ij} captures some notion of the contribution of c_i to predicting z_j such that for all $i, j: R_{ij} \ge 0$ and $\sum_{i=1}^{L} R_{ij} = 1$.

- Disentanglement (D)
- Degree to which c_i captures a single z_i
- $D_i = 1 H(\text{row 'distribution'})$
- Higher is better: [0, 1]
- Completeness (C)
- Degree to which z_i is captured by a single c_i
- $C_i = 1 H(\text{col. 'distribution'})$
- Higher is better: [0, 1]
- Informativeness (I)
- $I_j = 1 \mathbb{E}[\ell(z_j, f_j(\boldsymbol{c}))]$
- Higher is better: $[-\infty, 1]$

Cian Eastwood^{*,1,2}, Andrei Liviu Nicolicioiu^{*,1}, Julius von Kügelgen^{*,1,3}, Armin Kekic¹, Frederik Träuble¹, Andrea Dittadi^{1,4}, Bernhard Schölkopf¹

Connection to Identifiability

- Learning a data representation that recovers the underlying independent data-generating factors is closely related to blind source separation and widely-studied in independent component analysis (ICA) [2, 3, 4].
- Whether this goal is achieved up to acceptable ambiguities, subject to certain assumptions on the data-generating process, is typically formalised using the notion of *identifiability*.

Definition. Let K = L. We say that $\boldsymbol{c} = r(\boldsymbol{x}) = r(g(\boldsymbol{z}))$ identifies \boldsymbol{z} up to

- sign and permutation if c = Pz for some signed permutation matrix P;
- permutation and element-wise reparametrisation if \exists permutation π of
- $\{1, ..., K\}$ and invertible scalar-functions $\{h_k\}_{k=1}^K$ s.t. $\forall j : c_j = h_j(z_{\pi(j)})$.

Proposition. If D = C = 1, then R is a permutation matrix.

Corollary. If additionally $\boldsymbol{z} = W^{\top}\boldsymbol{c}$ and R = |W|, then \boldsymbol{c} identifies \boldsymbol{z} up to permutation and sign.

Corollary. Let $\boldsymbol{z} = f(\boldsymbol{c})$ with f an invertible function. If D = C = 1 and the feature importance matrix R satisfies $R_{ij} = 0 \iff \|\partial_i f_j\|_2 = 0$, then c identifies z up to permutation and element-wise reparametrisation.

Note. \leftarrow holds for most feature importance measures, but \Rightarrow generally does not: for measures of *average* performance, a feature may not contribute on average, but still be used (sometimes helping, sometimes hurting).

Experiments

Dataset: MPI3D-Real

Probes: MLPs and Random Forest (RF).

Representations: synthetic (Noisy lebels and uniforn miximg of labels), raw data, VAEs, β -VAEs, and ImageNet-pretrained ResNet18.

Representation	Probe	D	С	I	Е	S
GT Labels <i>z</i>	MLP*	1	1	1	1	1
Noisy labels	MLP* MLP RF	$ \begin{array}{r} 1 \\ 0.97 \\ 0.75 \end{array} $	$ \begin{array}{c} 1 \\ 0.97 \\ 0.76 \end{array} $	0.9 0.89 0.89	1 0.99 0.98	$1.0 \\ 1.0 \\ 1.0$
Uniform mix	MLP* MLP RF	$0 \\ 0.13 \\ 0.17$	0 0.22 0.21	$1 \\ 1.0 \\ 1.0$	1 1.0 0.72	$1.0 \\ 1.0 \\ 1.0$
VAE	MLP RF	0.15 0.10	0.14 0.10	0.99 0.93	0.71 0.65	$\begin{array}{c} 0.7\\ 0.7\end{array}$
eta- VAE	MLP RF	0.26 0.22	0.38 0.25	0.74 0.72	0.81 0.85	$\begin{array}{c} 0.7\\ 0.7\end{array}$
ImgNet- pretr	MLP RF	$\begin{array}{c} 0.16\\ 0.35\end{array}$	0.10 0.20	0.99 0.89	0.82 0.78	0.01 0.01
Raw data	MLP RF	0.22 0.84	0.16 0.41	0.99 0.96	0.82 0.80	0.001 0.001

Probe-agnostic feature importances. *D* and *C* scores can be computed for arbitrary black-box probes f (e.g. MLPs) by using predictor-agnostic feature importance measures (e.g. SAGE [5]).

Explicitness (E):

Size (S):

The Extended DCI-ES Framework

• Main idea: the functional capacity required to recover *z* from *c* is an important but under-explored aspect of evaluating representations, e.g. recovering z from noisy observations z' is "easy" (low/linear capacity), but doing so from images is "hard" (high/nonlin. cap.).

• **Definition:** The ease-of-use or *explicitness* of a representation *c* for predicting z_i is quantified by the (normalized) Area Under its Loss-Capacity *Curve* (AULCC), which displays test loss against probe capacity.

Intuition: large area means c was hard-to-use (required high capacity).

• **Motivation:** Increased representation size often improves other scores like I and E, so we report a measure of size to allow an analysis of the size-informativeness or size-explicitness trade-off.

Definition:

S =	K_{-}	$\dim(\boldsymbol{z})$		
	\overline{L} –	$\overline{\dim(\boldsymbol{c})}$.		

References

[1] Cian Eastwood and Christopher K I Williams. A framework for the quantitative evaluation of disentangled representations. In International Conference on Learning Representations, 2018.

[2] Pierre Comon. Independent component analysis, a new concept? *Signal processing*, 36(3):287–314, 1994.

[3] Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence and uniqueness results. Neural networks, 12(3):429–439, 1999.

[4] Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and generalized contrastive learning. In The 22nd International Conference on Artificial Intelligence and Statistics, pages 859–868. PMLR, 2019. [5] Ian Covert, Scott M Lundberg, and Su-In Lee. Understanding global feature contributions with additive importance measures. Advances in Neural Information Processing Systems, 33:17212–17223, 2020.