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Summary

We connect the DCI scores of Eastwood and Williams (2018, [1]) to two
common notions of linear and nonlinear identifiability.
We introduce a new complementary notion of disentanglement based
on the functional capacity required to use a representation.

Notation & Background

Data-generating factors: z ∈ RK

Observations: x = g(z) ∈ RD

Representation or code: c=r(x) ∈ RL

The DCI framework [1]
quantitatively evaluates a
representation or code c by:
1. Training a probe f to
predict z from c, i.e., ẑ =
f (c) =f (r(x)) = f (r(g(z)));

2. Quantifying f ’s prediction
error and deviation from an
ideal one-to-one mapping.

Model

Renderer

(e.g.	PCA,	VAE,	InfoGAN)

Definition. R ∈ RL×K is called a matrix of relative importances of c for pre-
dicting z via ẑ = f (c) if Rij captures some notion of the contribution of ci to
predicting zj such that for all i, j: Rij ≥ 0 and

∑L
i=1 Rij = 1.

Disentanglement (D)
Degree to which ci captures a single zj

Di = 1 − H(row ‘distribution’)
Higher is better: [0, 1]

Completeness (C)
Degree to which zj is captured by a single cj

Cj = 1 − H(col. ‘distribution’)
Higher is better: [0, 1]

Informativeness (I)
Ij = 1 − E[ℓ(zj, fj(c))]
Higher is better: [−∞, 1]

Connection to Identifiability

Learning a data representation that recovers the underlying independent
data-generating factors is closely related to blind source separation and
widely-studied in independent component analysis (ICA) [2, 3, 4].
Whether this goal is achieved up to acceptable ambiguities, subject to
certain assumptions on the data-generating process, is typically
formalised using the notion of identifiability.

Definition. Let K = L. We say that c = r(x) = r(g(z)) identifies z up to

- sign and permutation if c = Pz for some signed permutation matrix P ;
- permutation and element-wise reparametrisation if ∃ permutation π of

{1, ..., K} and invertible scalar-functions {hk}K
k=1 s.t. ∀j : cj = hj(zπ(j)).

Proposition. If D = C = 1, then R is a permutation matrix.
Corollary. If additionally z = W ⊤c and R = |W |, then c identifies z up to
permutation and sign.
Corollary. Let z = f (c) with f an invertible function. If D = C = 1 and
the feature importance matrix R satisfies Rij = 0 ⇐⇒ ∥∂ifj∥2 = 0, then c
identifies z up to permutation and element-wise reparametrisation.
Note. ⇐= holds for most feature importance measures, but =⇒ generally
does not: for measures of average performance, a feature may not contribute
on average, but still be used (sometimes helping, sometimes hurting).

Experiments

Dataset: MPI3D-Real. Probes: MLPs and Random Forest (RF).
Representations: synthetic (Noisy lebels and uniforn miximg of labels), raw
data, VAEs, β-VAEs, and ImageNet-pretrained ResNet18.
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Representation Probe D C I E S
GT Labels z MLP* 1 1 1 1 1

Noisy
labels

MLP* 1 1 0.9 1 1.0
MLP 0.97 0.97 0.89 0.99 1.0
RF 0.75 0.76 0.89 0.98 1.0

Uniform
mix

MLP* 0 0 1 1 1.0
MLP 0.13 0.22 1.0 1.0 1.0
RF 0.17 0.21 1.0 0.72 1.0

VAE MLP 0.15 0.14 0.99 0.71 0.7
RF 0.10 0.10 0.93 0.65 0.7

β-
VAE

MLP 0.26 0.38 0.74 0.81 0.7
RF 0.22 0.25 0.72 0.85 0.7

ImgNet-
pretr

MLP 0.16 0.10 0.99 0.82 0.01
RF 0.35 0.20 0.89 0.78 0.01

Raw
data

MLP 0.22 0.16 0.99 0.82 0.001
RF 0.84 0.41 0.96 0.80 0.001

The Extended DCI-ES Framework

Probe-agnostic feature importances. D and C scores can be computed for
arbitrary black-box probes f (e.g. MLPs) by using predictor-agnostic feature
importance measures (e.g. SAGE [5]).

Explicitness (E):

Main idea: the functional capacity required to recover z from c is an
important but under-explored aspect of evaluating representations, e.g.
recovering z from noisy observations z′ is “easy” (low/linear capacity),
but doing so from images is “hard” (high/nonlin. cap.).
Definition: The ease-of-use or explicitness of a representation c for
predicting zj is quantified by the (normalized) Area Under its Loss-Capacity
Curve (AULCC), which displays test loss against probe capacity.
Intuition: large area means c was hard-to-use (required high capacity).
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Size (S):

Motivation: Increased representation size often improves other scores
like I and E, so we report a measure of size to allow an analysis of the
size-informativeness or size-explicitness trade-off.
Definition:

S = K

L
= dim(z)
dim(c)

.
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